TECHNOLOGY AND SAFETY OF MARINE SYSTEMS by ANAND PILLAY

Pages 335
Views 768
TECHNOLOGY AND SAFETY OF MARINE SYSTEMS by ANAND PILLAY

TABLE OF CONTENTS

Series Preface v
Preface vii
Chapter 1 Introduction
Summary ………………………………………………………………………………………………………………………………….. 1
1.1 Introduction ……………………………………………………………………………………………………………………… 1
1.2 Safety and Reliability Development in the Maritime Industry ………………………………………………… 1
1.3 Present Status ………………………………………………………………………………………………………………….. 2
1.4 Databases ………………………………………………………………………………………………………………………… 3
1.5 Description of the Book …………………………………………….. ” ……………………………………………………… 4
1.6 References (Chapter 1) ………………………………………………………………………………………………………. 7
Chapter 2 Ship Safety and Accident Statistics
Summary …………………………………………………………………………………………………………………………………… 9
2.1 Introduction ……………………………………………………………………………………………………………………… 9
2.2 The Code of Practice for the Safety ofSmall Fishing Vessels ……………………………………………….. 10
2.2.1 Development ……………………………………………………………………………………………………….. 10
2.2.2 Code Requirements ………………………………………………………………………………………………. 11
2.3 The Fishing Vessels (Safety Provisions) Safety Rules 1975 ………………………………………………….. 11
2.4 Accident Data for Fishing Vessels …………………………………………………………………………………….. 12
2.5 Data Analysis …………………………………………………………………………………………………………………. 13
2.5.1 Machinery Damage ………………………………………………………………………………………………. 14
2.5.2 Foundering/Flooding …………………………………………………………………………………………….. 14
2.5.3 Grounding …………………………………………………………………………………………………………… 14
2.5.4 Collisions and Contacts …………………………………………………………………………………………. 15
2.5.5 Fires and Explosions …………………………………………………………………………………………….. 15
2.5.6 Capsizing …………………………………………………………………………………………………………….. 15
2.5.7 HeavyWeather Damage ……………………………………………………………………………………….. 15
Containership Accident Statistics ……………………………………………………………………………………… 16
2.6.1 Introduction to Containerships ……………………………………………………………………………….. 16
2.6.2 Containership Accident Statistics …………………………………………………………………………… 17
Conclusion …………………………………………………………………………………………………………………….. 18
References (Chapter 2) …………………………………………………………………………………………………….. 18
2.6
2.7
2.8
Chapter 3 Safety Analysis Techniques
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
Summary …………………………………………………………………………………………………………………………………. 29
Introduction ……………………………………………………………………………………………………………………. 29
Qualitative Safety Analysis ………………………………………………………………………………………………. 30
Quantitative Safety Analysis …………………………………………………………………………………………….. 31
3.3.1 Event Probabilities ……………………………………………………………………………………………….. 31
3.3.2 Failure Probability Distributions …………………………………………………………………………….. 31
3.3.2.1 Exponential Distribution ……………………………………………………………………………. 32
3.3.2.2 Normal Distribution …………………………………………………………………………………… 33
3.3.3 Event Consequences …………………………………………………………………………………………….. 33
Cause and Effect Relationship ………………………………………………………………………………………….. 33
Preliminary Hazard Analysis (PHA) ………………………………………………………………………………….. 34
3.5.1 Subsystem Hazard Analysis/System Hazard Analysis ……………………………………………….. 35
3.5.2 Operating and Support Hazard Analysis ………………………………………………………………….. 35
What-If Analysis …………………………………………………………………………………………………………….. 36
HAZard and OPerability (HAZOP) Studies ………………………………………………………………………… 36
3.7.1 Guidewords, Selection of Parameters and Deviations ……………………………………………….. 36
3.7.2 HAZOP Process …………………………………………………………………………………………………… 37
3.7.3 HAZOP Application to Fishing Vessels ………………………………………………………………….. 38
Fault Tree Analysis (FTA) ……………………………………………………………………………………………….. 39
3.9
3.10
3.11
3.12
3.13
3.14
3.8.1 Benefits to Be Gained fromFTA ……………………………………………………………………………. 39
3.8.2 System Definition ………………………………………………………………………………………………… 40
3.8.3 Fault Tree Construction ………………………………………………………………………………………… 40
3.8.4 Qualitative Fault Tree Evaluation …………………………………………………………………………… 41
3.8.5 Quantitative Fault Tree Evaluation …………………………………………………………………………. 41
3.8.6 FTA Example ………………………………………………………………………………………………………. 44
EventTree Analysis ………………………………………………………………………………………………………… 45
3.9.1 EventTree Example ……………………………………………………………………………………………… 46
Markov Chains ……………………………………………………………………………………………………………….. 46
Failure Mode, Effects and Critical Analysis (FMECA) ………………………………………………………… 46
3.11.1 FMECA Example ……………………………………………………………………………………………….. 48
Other Analysis Methods …………………………………………………………………………………………………… 50
3.12.1 Diagraph-based Analysis (DA) …………………………………………………………………………….. 50
3.12.2 Decision TableMethod ……………………………………………………………………………………….. 50
3.12.3 Limit State Analysis ……………………………………………………………………………………………. 50
Conclusion …………………………………………………………………………………………………………………….. 50
References (Chapter 3) …………………………………………………………………………………………………….. 51
Chapter 4 FormalSafety Assessment of Ships and Its Relation to OffshoreSafety Case Approach
Summary ………………………………………………………………………………………………………………………………… 61
4.1 Offshore Safety Assessment …………………………………………………………………………………………….. 61
4.2 Formal Ship Safety Assessment ………………………………………………………………………………………… 70
4.3 Risk Criteria …………………………………………………………………………………………………………………… 72
4.4 Discussion and Conclusion ………………………………………………………………………………………………. 73
4.5 References (Chapter 4) …………………………………………………………………………………………………….. 74
Chapter 5 Formal Safety Assessment
Summary …………………………………………………………………………………………………………………………………. 81
5.1 Formal Safety Assessment ……………………………………………………………………………………………….. 81
5.1.1 Step 1 – Hazard Identification ………………………………………………………………………………… 82
5.1.2 Step 2 – Risk Estimation ………………………………………………………………………………………… 83
5.1.3 Step 3 – Risk Control Options (RCOs) …………………………………………………………………….. 84
5.1.4 Step 4 – Cost-Benefit Analysis (CBA) …………………………………………………………………….. 84
5.1.5 Step 5 – Decision-making ………………………………………………………………………………………. 84
5.1.6 A B r i e fDiscussion ……………………………………………………………………………………………….. 85
5.2 A Formal Safety Assessment Framework for a Genetic Fishing Vessel …………………………………. 85
5.2.1 Genetic Fishing Vessel …………………………………………………………………………………………. 85
5.2.2 HAZID ……………………………………………………………………………………………………………….. 88
5.2.3 Hazard Screening …………………………………………………………………………………………………. 90
5.2.4 “Equivalent Total”. ………………………………………………………………………………………………. 91
5.2.5 Recommendations ………………………………………………………………………………………………… 91
An Example …………………………………………………………………………………………………………………… 93
Formal Safety Assessment of Containerships ……………………………………………………………………… 94
5.4.1 Genetic Containership …………………………………………………………………………………………… 94
5.4.2 A Formal Safety Assessment Framework for Containerships ……………………………………… 96
5.4.2.1 Hazard Identification (HAZID) ……………………………………………………………………. 96
5.4.2.2 Risk Assessment ……………………………………………………………………………………….. 98
5.4.2.3 Ways of Managing Risks …………………………………………………………………………… 98
5.4.2.4 Cost-Benefit Assessment …………………………………………………………………………….. 99
5.4.2.5 Decision Making ……………………………………………………………………………………….. 99
5.4.3 Evaluation and Recommendations in Formal Safety Assessment of Containerships ……… 99
Discussions ………………………………………………………………………………………………………………….. 101
5.5.1 The Brainstorming Process ………………………………………………………………………………….. 102
5.5.2 Need for Interaction with Other Industries’ Safety and Quality Management Systems … 102
5.5.3 Human Factor …………………………………………………………………………………………………….. 102
5.5.4 The Availability and Reliability of Failure Data …………………………………………………….. 102
5.5.5 Cost Benefit Analysis ………………………………………………………………………………………….. 103
Conclusion …………………………………………………………………………………………………………………… 103
References (Chapter 5) …………………………………………………………………………………………………… 104
5.3
5.4
5.5
5.6
5.7
Chapter 6 – Risk Assessment Using Fuzzy Set Approach
Stmmmry ………………………………………………………………………………………………………………………………. 117
6.1 Introduction ………………………………………………………………………………………………………………….. 117
6.2 Uncertainty …………………………………………………………………………………………………………………… 118
6.3 Fuzzy Set Theory Background ………………………………………………………………………………………… 120
6.3.1 Types ofMembership Function ……………………………………………………………………………. 121
6.3.2 Representation Theorem ……………………………………………………………………………………… 122
6.3.3 Application of FST ……………………………………………………………………………………………… 123
6.4 Risk Assessment Using FST …………………………………………………………………………………………… 123
6.4.1 Part 1: Probability of Failure Event Occurrence ……………………………………………………… 124
6.4.2 Part 2: Severity of Consequences ………………………………………………………………………….. 127
6.4.3 Risk Assessment ………………………………………………………………………………………………… 130
6.4.4 Rule Evaluation and Defuzzification …………………………………………………………………….. 130
6.5 Application to a Hydraulic Winch System ………………………………………………………………………… 131
6.5.1 Severity of Consequence Modelling ……………………………………………………………………… 133
6.5.2 Risk Ranking of the Hydraulic WinchSystem ……………………………………………………….. 133
6.6 Conclusion …………………………………………………………………………………………………………………… 134
6.7 References (Chapter 6) …………………………………………………………………………………………………… 134
Chapter 7 Modified Failure Mode and Effects Analysis
Summary ………………………………………………………………………………………………………………………………. 149
7.1 Introduction ………………………………………………………………………………………………………………….. 149
7.2 Some Weaknesses of FMEA …………………………………………………………………………………………… 151
7.3 Background of Grey Theory …………………………………………………………………………………………… 152
7.4 Fuzzy Rule Based Method ……………………………………………………………………………………………… 153
7.4.1 FuzzyMembership Function ………………………………………………………………………………… 153
7.4.2 Fuzzy Rule Base Development …………………………………………………………………………….. 154
7.4.3 Ranking the Priority for Attention ………………………………………………………………………… 155
7.5 Grey TheoryMethod ……………………………………………………………………………………………………… 155
7.5.1 Comparative Series …………………………………………………………………………………………….. 156
7.5.2 Standard Series …………………………………………………………………………………………………… 157
7.5.3 Difference …………………………………………………………………………………………………………. 157
7.5.4 Grey Relation Coefficient ……………………………………………………………………………………. 158
7.5.5 Grey Relation …………………………………………………………………………………………………….. 158
7.6 Application to Fishing Vessels ………………………………………………………………………………………… 159
7.6.1 Fuzzy Rule Base Application ……………………………………………………………………………….. 159
7.6.2 Grey Theory Application …………………………………………………………………………………….. 161
7.7 Analysis of Results ………………………………………………………………………………………………………… 163
7.8 Conclusion …………………………………………………………………………………………………………………… 164
7.9 References (Chapter 6) …………………………………………………………………………………………………… 164
8.3
8.4
8.5
8.6
Chapter 8 Maintenance Modelling
Summary ………………………………………………………………………………………………………………………………. 179
8.1 Introduction ………………………………………………………………………………………………………………….. 179
8.2 Modem Maintenance Concepts ……………………………………………………………………………………….. 180
8.2.1 Reactive Maintenance …………………………………………………………………………………………. 181
8.2.2 Preventive Maintenance ………………………………………………………………………………………. 181
8.2.3 Predictive Maintenance ……………………………………………………………………………………….. 182
8.2.4 Proactive Maintenance ………………………………………………………………………………………… 183
8.2.5 Summary o f Maintenance Techniques …………………………………………………………………… 183
Current Maintenance Practice on Fishing Vessels ……………………………………………………………… 183
Background ofDelay-Time Analysis ……………………………………………………………………………….. 185
Model Development ………………………………………………………………………………………………………. 186
8.5.1 Expected Downtime Model ………………………………………………………………………………….. 186
8.5.1.1 Delay Time Parameter Estimation ……………………………………………………………… 187
8.5.2 Expected Cost Model ………………………………………………………………………………………….. 188
8.5.2.1 Breakdown Repair Cost ……………………………………………………………………………. 189
8.5.2.2 Inspection Repair Cost ……………………………………………………………………………… 191
8.5.3 ExpectedSafety Criticality Model ………………………………………………………………………… 192
An Example …………………………………………………………………………………………………………………. 193
8.6.1 Modelling Process ………………………………………………………………………………………. 194
8.7
8.8
8.6.20ptimisation Resuits …………………………………………………………………………………… 198
Conclusion …………………………………………………………………………………………………………………… 198
References (Chapter 8) …………………………………………………………………………………………………… 199
Chapter 9 HumanError Assessment and Decision Making Using Analytical Hierarchy
Processing
Summary ………………………………………………………………………………………………………………………………. 213
9.1 Introduction ………………………………………………………………………………………………………………….. 213
9.2 Review ofHuman Error Assessment Methods ………………………………………………………………….. 214
9.2.1 Methods for Quantification ofHuman Failures ………………………………………………………. 214
9.2.2 THERP ……………………………………………………………………………………………………………… 214
9.2.3 Accident Sequence Evaluation Programme (ASEP) ………………………………………………… 215
9.2.4 SLIM-MAUD ……………………………………………………………………………………………………. 215
9.2.5 Human Reliability Assessment (HRA) ………………………………………………………………….. 215
9.3 Human Error Probability ………………………………………………………………………………………………… 217
9.3.1 Skill-Based ………………………………………………………………………………………………………… 217
9.3.2 Rule-Based ………………………………………………………………………………………………………… 218
9.3.3 Knowledge-Based ………………………………………………………………………………………………. 218
9.4 Analytical Hierarchy Processing ……………………………………………………………………………………… 220
9.4.1 Principles and Background ofAHP ………………………………………………………………………. 220
9.4.2 Weight Vector Calculation …………………………………………………………………………………… 221
9.4.3 Risk and AHP ……………………………………………………………………………………………………. 221
9.4.4 AHP forHuman Error Assessment and Decision Making for Ship Operation …………….. 222
9.5 Application ofAHP to Vessel Operations ………………………………………………………………………… 222
9.6 An Example …………………………………………………………………………………………………………………. 225
9.6.1 Initial Shooting Operation ……………………………………………………………………………………. 225
9.6.2 Hierarchy Set-Up ……………………………………………………………………………………………….. 226
9.6.3 Level Two Matrix ………………………………………………………………………………………………. 226
9.6.4 Human Error Probability Evaluation ……………………………………………………………………… 226
9.6.5 Human Error Severity Evaluation …………………………………………………………………………. 228
9.6.6 Risk Control Options (RCO) ………………………………………………………………………………… 229
9.6.7 RCO Evaluation to Reduce Probability of Occurrence …………………………………………….. 230
9.6.8 RCO Evaluation to Reduce Severity ofPossible Consequences ………………………………… 231
9.6.9 Summary of Results ……………………………………………………………………………………………. 232
9.7 Conclusion …………………………………………………………………………………………………………………… 232
9.8 References (Chapter 9) …………………………………………………………………………………………………… 233
Chapter 10 Three Novel Risk Modelling and Decision Making Techniques
Summary ………………………………………………………………………………………………………………………………. 243
10.1 A Safety-Based Decision Support SystemUsing Artificial NeuralNetwork Techniques ………… 244
10.1.1 Introduction ……………………………………………………………………………………………………… 244
10.1.2 A Risk Estimation Framework ……………………………………………………………………………. 245
10.1.3 Two Examples ………………………………………………………………………………………………….. 246
10.1.3.1 Case Study 1 ………………………………………………………………………………………… 246
10.1.3.2 Case Study 2 ………………………………………………………………………………………… 247
10.1.4 Discussions …………………………………………………………………………………………………………. 249
10.1.5 Conclusion …………………………………………………………………………………………………………. 249
10.2 Taguchi Concepts and Their Applications inMaritime Safety Assessment …………………………… 250
10.2.1 Introduction ……………………………………………………………………………………………………… 250
10.2.2 The TaguchiMethods and Robust Design ………………………………………………………….. 251
10.2.3 The Design Process …………………………………………………………………………………………… 252
10.2.4 Background ofTaguchi Concepts ……………………………………………………………………… 254
10.2.4.1 The Tagnchi Quality Loss Function ………………………………………………………….. 254
10.2.4.2 Signal-to-Noise Ratio (S/N Ratio) ……………………………………………………………. 255
10.2.4.3 Life Cycle Quality Loss ………………………………………………………………………….. 256
10.2.4.4 Taguchi’s Two Step Optimisation Process ………………………………………………… 257
10.2.4.50rthogonal Arrays ………………………………………………………………………………… 257
10.2.4.6 Degree of Freedom …………………………………………………………………………………. 257
10.2.4.7 Control Factors ………………………………………………………………………………………. 258
10.2.4.8 Noise Factors …………………………………………………………………………………………. 258
10.2.4.9 ANOVA Terms and Notations …………………………………………………………………. 258
10.2.4.10 Confidence Intervals …………………………………………………………………………….. 259
10.3
10.4
10.2.4.11 Brainstorming ………………………………………………………………………………………. 260
10.2.5 A Safety Optimisation Framework Using Taguchi Concepts ………………………………….. 260
10.2.6 Application of Taguchi Concepts in Maritime Safety Studies …………………………………. 261
10.2.7 Conclusion ………………………………………………………………………………………………………. 266
A Multiple Criteria Decision Making Approach ………………………………………………………………… 266
10.3.1 Introduction ……………………………………………………………………………………………………… 266
10.3.2 Safety and Cost Modelling …………………………………………………………………………………. 266
10.3.2.1 Safety Modelling ……………………………………………………………………………………. 266
10.3.2.3 Cost Modelling ………………………………………………………………………………………. 267
10.3.2.2 Safety and Cost Modelling- an Example ………………………………………………….. 268
10.3.3 Safety and Cost Synthesis Using MCDA Methods ………………………………………………… 272
10.3.3.1 Additive Utility Function Approach ………………………………………………………….. 272
10.3.3.2 AHP ……………………………………………………………………………………………………… 275
10.3.3.3 The Evidential Reasoning Approach …………………………………………………………. 277
10.3.4 Discussion of the Results …………………………………………………………………………………… 280
10.3.5 Conclusion ………………………………………………………………………………………………………. 281
References (Chapter 10) …………………………………………………………………………………………………. 281
Chapter 11 – Conclusions
Summary ………………………………………………………………………………………………………………………………. 305
Appendix 1: Code of Practice for Small Fishing Vessels ………………………………………………………….. 307
Appendix 2: Fishing Vessel (Safety Provisions) Safety Rules 1975 ……………………………………………. 311
Appendix 3: Influence Diagram ……………………………………………………………………………………………… 317
Subject Index …………………………………………………………………………………………………………………………. 319