Pump Characteristics and Applications 3rd Edition By Michael Volk

Pages 502
Views 767
Size 66.3 MiB
Downloads 56
Pump Characteristics and Applications 3rd Edition By Michael Volk

Tags:

Contents

Preface to the Third Edition. ……………………………………………………………………..xv
Preface to the Second Edition. …………………………………………………………………xvii
Preface to the First Edition. ………………………………………………………………………xix
Acknowledgments. ………………………………………………………………………………..xxiii
Author. ……………………………………………………………………………………………………xxv
1. Introduction to Pumps. ………………………………………………………………………..1
I. What Is a Pump?. ………………………………………………………………………..1
II. Why Increase a Liquid’s Pressure?. ……………………………………………..2
III. Pressure and Head. ……………………………………………………………………..3
IV. Classification of Pumps. ………………………………………………………………4
A. Principle of Energy Addition. ………………………………………………4
1. Kinetic. ……………………………………………………………………….4
2. Positive Displacement. ………………………………………………..4
B. How Energy Addition Is Accomplished. ……………………………..6
C. Geometry Used. …………………………………………………………………..6
V. How Centrifugal Pumps Work. …………………………………………………..6
VI. PD Pumps. …………………………………………………………………………………12
A. General. ……………………………………………………………………………..12
B. When to Choose a PD Pump. …………………………………………….12
C. Major Types of PD Pumps. ………………………………………………..15
1. Sliding Vane Pump. …………………………………………………..19
2. Sinusoidal Rotor Pump. …………………………………………….20
3. Flexible Impeller Pump. ……………………………………………20
4. Flexible Tube (Peristaltic) Pump. ……………………………….21
5. Progressing Cavity Pump. ………………………………………..22
6. External Gear Pump. …………………………………………………23
7. Internal Gear Pump………………………………………………….25
8. Rotary Lobe Pump. …………………………………………………..26
9. Circumferential Piston, Bi-Wing Lobe Pumps. ……………27
10. Multiple-Screw Pump. ………………………………………………28
11. Piston Pump. …………………………………………………………….29
12. Plunger Pump. ………………………………………………………….31
13. Diaphragm Pump. …………………………………………………….32
14. Miniature PD Pumps. ……………………………………………….35
2. Hydraulics, Selection, and Curves. ……………………………………………………39
I. Overview. ………………………………………………………………………………….39
II. Pump Capacity. …………………………………………………………………………41
III. Total Head. ………………………………………………………………………………..42
A. Static Head………………………………………………………………………..43
B. Friction Head. ……………………………………………………………………46
C. Pressure Head. …………………………………………………………………..57
D. Velocity Head. ……………………………………………………………………58
IV. Performance Curve. …………………………………………………………………..60
V. Horsepower and Efficiency. ………………………………………………………68
A. Hydraulic Losses. ………………………………………………………………70
B. Volumetric Losses. …………………………………………………………….70
C. Mechanical Losses. ……………………………………………………………70
D. Disk Friction Losses. ………………………………………………………….70
VI. NPSH and Cavitation. ……………………………………………………………….76
A. Cavitation and NPSH Defined. ………………………………………….76
1. NPSHa. ………………………………………………………………………81
2. NPSHr. ………………………………………………………………………84
B. Calculating NPSHa: Examples. …………………………………………..85
C. Remedies for Cavitation. ……………………………………………………86
D. More NPSHa Examples. ……………………………………………………..89
E. Safe Margin NPSHa versus NPSHr. ……………………………………92
F. NPSH for Reciprocating Pumps. ……………………………………….96
VII. Specific Speed and Suction Specific Speed………………………………..97
VIII. Affinity Laws. ………………………………………………………………………….103
IX. System Head Curves. ……………………………………………………………….107
X. Parallel Operation. …………………………………………………………………..116
XI. Series Operation. ……………………………………………………………………..122
XII. Oversizing Pumps. ………………………………………………………………….126
XIII. Pump Speed Selection. …………………………………………………………….128
A. Suction Specific Speed. …………………………………………………….129
B. Shape of Pump Performance Curves……………………………….129
C. Maximum Attainable Efficiency. ……………………………………..129
D. Speeds Offered by Manufacturers. …………………………………..133
E. Prior Experience. ……………………………………………………………..133
3. Special Hydraulic Considerations. …………………………………………………..135
I. Overview. ………………………………………………………………………………..135
II. Viscosity. …………………………………………………………………………………135
III. Software to Size Pumps and Systems. ……………………………………..150
A. General. ……………………………………………………………………………150
B. Value of Piping Design Software. …………………………………….151
C. Evaluating Fluid Flow Software. ……………………………………..152
D. Building the System Model. ……………………………………………..153
1. Copy Command. ……………………………………………………..154
2. Customize Symbols. ………………………………………………..154
3. CAD Drawing Features. ………………………………………….154
4. Naming Items. …………………………………………………………154
5. Displaying Results. ………………………………………………….155
6. The Look of the Piping Schematic. …………………………..155
E. Calculating the System Operation. …………………………………..155
1. Sizing Pipe Lines. ……………………………………………………156
2. Calculating Speed. …………………………………………………..156
3. Showing Problem Areas. …………………………………………156
4. Equipment Selection……………………………………………….156
5. Alternate System Operational Modes. ……………………..157
F. Communicating the Results. ……………………………………………157
1. Viewing Results within the Program. ……………………..157
2. Incorporating User-Defined Limits. ………………………..157
3. Selecting the Results to Display. ……………………………..157
4. Plotting the Piping Schematic. …………………………………158
5. Exporting the Results. ……………………………………………..158
6. Sharing Results with Others. …………………………………..158
7. Sharing Results Using a Viewer Program. ……………….158
G. Conclusion. ………………………………………………………………………158
H. List of Software Vendors. …………………………………………………159
IV. Piping Layout. ………………………………………………………………………….159
V. Sump Design. …………………………………………………………………………..165
VI. Field Testing. ……………………………………………………………………………166
A. General. ……………………………………………………………………………166
B. Measuring Flow. ………………………………………………………………167
1. Magnetic Flowmeter. ………………………………………………168
2. Mass Flowmeter. ……………………………………………………..168
3. Nozzle. …………………………………………………………………….168
4. Orifice Plate. ……………………………………………………………168
5. Paddle Wheel. ………………………………………………………….169
6. Pitot Tube. ……………………………………………………………….169
7. Segmental Wedge. …………………………………………………..169
8. Turbine Meter. …………………………………………………………169
9. Ultrasonic Flowmeter. ……………………………………………..169
10. Venturi. ……………………………………………………………………170
11. Volumetric Measurement. ……………………………………….170
12. Vortex Flowmeter. …………………………………………………..170
C. Measuring TH. …………………………………………………………………171
D. Measuring Power. ……………………………………………………………173
E. Measuring NPSH. ……………………………………………………………173
4. Centrifugal Pump Types and Applications. ……………………………………175
I. Overview. ………………………………………………………………………………..175
II. Impellers. …………………………………………………………………………………176
A. Open versus Closed Impellers. ………………………………………..176
B. Single versus Double Suction. ………………………………………….182
C. Suction Specific Speed. …………………………………………………….183
D. Axial Thrust and Thrust Balancing. ………………………………..185
E. Filing Impeller Vane Tips. ………………………………………………..187
F. Solids Handling Impellers. ………………………………………………189
III. End Suction Pumps. …………………………………………………………………190
A. Close-Coupled Pumps. …………………………………………………….190
B. Frame-Mounted Pumps. ………………………………………………….193
IV. Inline Pumps. ………………………………………………………………………….195
V. Self-Priming Centrifugal Pumps. …………………………………………….197
VI. Split-Case Double Suction Pumps. …………………………………………..199
VII. Multistage Pumps. …………………………………………………………………..203
A. General. ……………………………………………………………………………203
B. Axially Split-Case Pumps. ……………………………………………….203
C. Radially Split-Case Pumps. ……………………………………………..207
VIII. Vertical Column Pumps. ………………………………………………………….208
IX. Submersible Pumps. ………………………………………………………………..213
X. Slurry Pumps. ………………………………………………………………………….215
XI. Vertical Turbine Pumps. …………………………………………………………..218
XII. Axial Flow Pumps. ………………………………………………………………….226
XIII. Regenerative Turbine Pumps. ………………………………………………….227
XIV. Pump Specifications and Standards. ………………………………………..228
A. General. ……………………………………………………………………………228
1. Liquid Properties. ……………………………………………………229
2. Hydraulic Conditions. ……………………………………………..229
3. Installation Details. …………………………………………………229
B. ANSI. ……………………………………………………………………………….230
C. API. ………………………………………………………………………………….232
D. ISO. ………………………………………………………………………………….233
XV. Couplings. ……………………………………………………………………………….234
XVI. Electric Motors. ………………………………………………………………………..240
A. Glossary of Frequently Occurring Motor Terms. ……………..240
1. Amps. ……………………………………………………………………..240
2. Code Letter. …………………………………………………………….241
3. Design Letter. ………………………………………………………….241
4. Efficiency. ………………………………………………………………..242
5. Frame Size. ………………………………………………………………242
6. Frequency……………………………………………………………….242
7. Full-Load Speed. ……………………………………………………..242
8. High Inertial Load. ………………………………………………….242
9. Insulation Class. ………………………………………………………242
10. Load Types. ……………………………………………………………..242
11. Phase. ………………………………………………………………………243
12. Poles. ……………………………………………………………………….243
13. Power Factor. …………………………………………………………..243
14. Service Factor. …………………………………………………………244
15. Slip. …………………………………………………………………………244
16. Synchronous Speed. ………………………………………………..244
17. Temperature. …………………………………………………………..244
18. Time Rating. ……………………………………………………………244
19. Voltage. ……………………………………………………………………245
B. Motor Enclosures…………………………………………………………….245
1. Open Drip-Proof. …………………………………………………….245
2. Totally Enclosed Fan Cooled. …………………………………..245
3. Totally Enclosed Air Over. ………………………………………246
4. Totally Enclosed Nonventilated. ……………………………..246
5. Hazardous Location. ……………………………………………….246
C. Service Factor. ………………………………………………………………….246
D. Insulation Classes. …………………………………………………………..247
E. Motor Frame Size. ……………………………………………………………247
1. Historical Perspective. …………………………………………….247
2. Rerating and Temperature. ……………………………………..250
3. Motor Frame Dimensions. ……………………………………….251
4. Fractional Horsepower Motors. ……………………………….251
5. Integral Horsepower Motors. …………………………………..251
6. Frame Designation Variations. ………………………………..251
F. Single-Phase Motors. ……………………………………………………….257
G. Motors Operating on Variable Frequency Drives…………….261
H. NEMA Locked Rotor Code. ……………………………………………..262
I. Amps, Watts, Power Factor, and Efficiency. ……………………..263
1. Introduction. ……………………………………………………………263
2. Power Factor. …………………………………………………………..263
3. Efficiency. ………………………………………………………………..264
4. Amperes. …………………………………………………………………265
5. Summary. ……………………………………………………………….265
5. Sealing Systems and Sealless Pumps. ……………………………………………..267
I. Overview. ………………………………………………………………………………..267
II. O-Rings. …………………………………………………………………………………..267
A. What Is an O-Ring?. …………………………………………………………268
B. Basic Principle of the O-Ring Seal. …………………………………..268
C. The Function of the O-Ring. …………………………………………….268
D. Static and Dynamic O-Ring Sealing Applications. …………..270
E. Other Common O-Ring Seal Configurations. …………………..270
F. Limitations of O-Ring Use. ………………………………………………271
III. Stuffing Box and Packing Assembly. ……………………………………….272
A. Stuffing Box. …………………………………………………………………….273
B. Stuffing Box Bushing. ………………………………………………………273
C. Packing Rings. …………………………………………………………………273
D. Packing Gland. …………………………………………………………………274
E. Lantern Ring. …………………………………………………………………..275
IV. Mechanical Seals. …………………………………………………………………….276
A. Mechanical Seal Advantages. …………………………………………..276
1. Lower Mechanical Losses. ………………………………………276
2. Less Sleeve Wear. …………………………………………………….276
3. Zero or Minimal Leakage. ……………………………………….276
4. Reduced Maintenance. …………………………………………….276
5. Seal Higher Pressures. …………………………………………….276
B. How Mechanical Seals Work. …………………………………………..277
C. Types of Mechanical Seals. ………………………………………………280
1. Single, Inside Seals. …………………………………………………280
2. Single, Outside Seals. ………………………………………………282
3. Single, Balanced Seals. …………………………………………….283
4. Dual Seals. ………………………………………………………………283
5. Gas Lubricated Noncontacting Seals. ………………………286
6. Seal Piping Plans. ……………………………………………………288
V. Sealless Pumps. ……………………………………………………………………….292
A. General. ……………………………………………………………………………292
B. Magnetic Drive Pumps. ……………………………………………………293
1. Bearings in the Pumped Liquid. ……………………………..295
2. Dry Running. ………………………………………………………….296
3. Inefficiency……………………………………………………………..296
4. Temperature. …………………………………………………………..296
5. Viscosity. …………………………………………………………………297
C. Canned Motor Pumps. …………………………………………………….297
1. Fewer Bearings. ……………………………………………………….299
2. More Compact. ………………………………………………………..299
3. Double Containment. ………………………………………………299
4. Lower First Cost. ……………………………………………………..299
6. Energy Conservation and Life-Cycle Costs. ……………………………………301
I. Overview. ………………………………………………………………………………..301
II. Choosing the Most Efficient Pump. ………………………………………….302
III. Operating with Minimal Energy. …………………………………………….307
IV. Variable-Speed Pumping Systems. …………………………………………..308
V. Pump Life-Cycle Costs. ……………………………………………………………325
A. Improving Pump System Performance: An Overlooked Opportunity?. ………………………………………………………………….326
B. What Is Life-Cycle Cost?. …………………………………………………327
C. Why Should Organizations Care about Life-Cycle Cost?. …..327
D. Getting Started. ……………………………………………………………….328
E. Life-Cycle Cost Analysis. …………………………………………………328
1. Cic—Initial Investment Costs. ………………………………….330
2. Cin—Installation and Commissioning (Start-Up) Costs. ………………………………………………………………………330
3. Ce—Energy Costs……………………………………………………331
4. Co—Operation Costs. ………………………………………………332
5. Cm—Maintenance and Repair Costs. ……………………….332
6. Cs—Downtime and Loss of Production Costs. ………..334
7. Cenv—Environmental Costs, Including Disposal of Parts and Contamination from Pumped Liquid. …334
8. Cd—Decommissioning/Disposal Costs, Including Restoration of the Local Environment. ……..334
F. Total Life-Cycle Costs. ……………………………………………………..335
G. Pumping System Design. …………………………………………………335
H. Methods for Analyzing Existing Pumping Systems. ………..339
I. Example: Pumping System with a Problem Control Valve. …341
J. For More Information. ……………………………………………………..344
1. About the Hydraulic Institute. …………………………………346
2. About Europump. ……………………………………………………346
3. About the U.S. Department of Energy’s Office of Industrial Technologies. ………………………………………….346
7. Special Pump-Related Topics. …………………………………………………………347
I. Overview. ………………………………………………………………………………..347
II. Variable-Speed Systems. ………………………………………………………….348
III. Sealless Pumps. ……………………………………………………………………….348
IV. Corrosion. ………………………………………………………………………………..349
A. Galvanic or Two-Metal Corrosion. …………………………………..351
B. Uniform or General Corrosion. ………………………………………..351
C. Pitting Corrosion. …………………………………………………………….352
D. Intergranular Corrosion. ………………………………………………….353
E. Erosion Corrosion. ……………………………………………………………353
F. Stress Corrosion. ………………………………………………………………354
G. Crevice Corrosion. ……………………………………………………………354
H. Graphitization or Dezincification Corrosion. ……………………354
V. Nonmetallic Pumps. ………………………………………………………………..355
VI. Materials Used for O-Rings in Pumps. …………………………………….357
A. General. ……………………………………………………………………………357
1. Polymer. ………………………………………………………………….357
2. Rubber. ……………………………………………………………………357
3. Elastomer. ……………………………………………………………….357
4. Compound. ……………………………………………………………..358
B. Eight Basic O-Ring Elastomers. ………………………………………..358
1. Nitrile (NBR, Buna N). …………………………………………….358
2. Neoprene. ………………………………………………………………..359
3. Ethylene Propylene (EP, EPR, and EPDM). ………………359
4. Fluorocarbon (FKM, Viton, and Kalrez). ………………….359
5. Butyl. ……………………………………………………………………….360
6. Polyacrylate. …………………………………………………………….360
7. Silicone. …………………………………………………………………..360
8. Fluorosilicone. …………………………………………………………362
VII. High-Speed Pumps. …………………………………………………………………363
VIII. Bearings and Bearing Lubrication. …………………………………………..365
IX. Precision Alignment Techniques. …………………………………………….366
X. Software to Size Pumps and Systems. ……………………………………..367
8. Installation, Operation, Maintenance, and Repair. …………………………369
I. Overview. ………………………………………………………………………………..369
II. Installation, Alignment, and Startup. ………………………………………369
A. General. ……………………………………………………………………………369
B. Installation Checklist. ………………………………………………………370
1. Tag and Lock Out. …………………………………………………..370
2. Check Impeller Setting. …………………………………………..370
3. Install Packing or Seal. …………………………………………….371
4. Mount Bedplate, Pump, and Motor. …………………………371
5. Check Rough Alignment. ………………………………………..371
6. Place Grout in Bedplate. …………………………………………..373
7. Check Alignment. ……………………………………………………373
8. Flush System Piping. ……………………………………………….373
9. Connect Piping to Pump. ………………………………………..374
10. Check Alignment. ……………………………………………………375
11. Turn Pump by Hand. ………………………………………………375
12. Wire and Jog Motor. ………………………………………………..375
13. Connect Coupling. …………………………………………………..376
14. Check Shaft Runout. ………………………………………………..376
15. Check Valve and Vent Positions. ……………………………..376
16. Check Lubrication/Cooling Systems. ………………………376
17. Prime Pump if Necessary. ……………………………………….376
18. Check Alignment. ……………………………………………………377
19. Check System Components Downstream. ……………….377
20. Start and Run Pump. ……………………………………………….377
21. Stop Pump and Check Alignment. ………………………….378
22. Drill and Dowel Pump to Base. ……………………………….378
23. Run Benchmark Tests. ……………………………………………..378
III. Operation………………………………………………………………………………..378
A. General. ……………………………………………………………………………378
B. Minimum Flow. ……………………………………………………………….379
1. Temperature Rise. ……………………………………………………379
2. Radial Bearing Loads. ……………………………………………..380
3. Axial Thrust. …………………………………………………………..380
4. Prerotation. ……………………………………………………………..380
5. Recirculation. ………………………………………………………….381
6. Settling of Solids. …………………………………………………….382
7. Noise and Vibration. ……………………………………………….382
8. Power Savings, Motor Load. ……………………………………383
C. Preferred Operating Range. ……………………………………………..383
D. Ten Ways to Prevent Low Flow Damage in Pumps. …………384
1. Continuous Bypass. …………………………………………………385
2. Multicomponent Control Valve System. …………………..385
3. Variable Frequency Drive. ……………………………………….386
4. Automatic Recirculation Control Valve. …………………..387
5. Relief Valve. …………………………………………………………….388
6. Pressure Sensor. ………………………………………………………388
7. Ammeter. ………………………………………………………………..389
8. Power Monitor. ………………………………………………………..389
9. Vibration Sensor. ……………………………………………………..389
10. Temperature Sensor. ……………………………………………….390
IV. Maintenance. …………………………………………………………………………..390
A. Regular Maintenance………………………………………………………390
1. Lubrication. ……………………………………………………………..390
2. Packing. …………………………………………………………………..391
3. Seals. ……………………………………………………………………….392
B. Preventive Maintenance. ………………………………………………….392
1. Regular Lubrication. ………………………………………………..392
2. Rechecking Alignment. …………………………………………..392
3. Rebalance Rotating Element. …………………………………..392
4. Monitoring Benchmarks. …………………………………………393
C. Benchmarks. …………………………………………………………………….393
1. Hydraulic Performance. …………………………………………..393
2. Temperature. …………………………………………………………..393
3. Vibration…………………………………………………………………394
V. Troubleshooting. ……………………………………………………………………..399
VI. Repair. ……………………………………………………………………………………..400
A. General. ……………………………………………………………………………400
B. Repair Tips. ……………………………………………………………………..401
1. Document the Disassembly. ……………………………………401
2. Analyze Disassembled Pump. …………………………………402
3. Bearing Replacement………………………………………………402
4. Wear Ring Replacement………………………………………….403
5. Guidelines for Fits and Clearances. …………………………404
6. Always Replace Consumables. ………………………………..404
7. Balance Impellers and Couplings. …………………………..405
8. Check Runout of Assembled Pump. ………………………..405
9. Tag Lubrication Status…………………………………………….405
10. Cover Openings Prior to Shipment. …………………………405
9. Case Studies. …………………………………………………………………………………….407
I. Introduction. ……………………………………………………………………………407
II. Case Studies. ……………………………………………………………………………407
A. The Case of the Oversized Pump. ……………………………………407
1. Background. ……………………………………………………………407
2. Analysis of the Problem. ………………………………………….408
3. Solutions and Lessons Learned. ………………………………409
B. The Case of the Unreliable Refrigerant Pump. …………………412
1. Background. ……………………………………………………………412
2. Analysis of the Problem. ………………………………………….413
3. Solutions and Lessons Learned. ………………………………417
C. The Case of the Vibrating Vertical Turbine Pump. …………..418
1. Background. ……………………………………………………………418
2. Analysis of the Problem. ………………………………………….419
3. Solutions and Lessons Learned. ………………………………420
D. The Case of Too Many Pumps. …………………………………………421
1. Background. ……………………………………………………………421
2. Analysis of the Problem. ………………………………………….422
3. Solutions and Lessons Learned. ………………………………426
E. The Case of Too Few Pumps. ……………………………………………427
1. Background. ……………………………………………………………427
2. Analysis of the Problem. ………………………………………….431
3. Solutions and Lessons Learned. ………………………………431
F. The Case of the Underperforming Pump. ………………………..433
1. Background. ……………………………………………………………433
2. Analysis of the Problem. ………………………………………….435
3. Solutions and Lessons Learned. ………………………………435
G. The Case of the Problematic Variable Speed Pump. …………437
1. Background. ……………………………………………………………437
2. Analysis of the Problem. ………………………………………….438
3. Solutions and Lessons Learned. ………………………………440
H. The Case of the Shoe-Horned Wastewater Pumps. …………..440
1. Background. ……………………………………………………………440
2. Analysis of the Problem. ………………………………………….442
3. Solutions and Lessons Learned. ………………………………444
I. The Case of the High Suction Specific Speed Pump. ………..445
1. Background. ……………………………………………………………445
2. Analysis of the Problem. ………………………………………….445
3. Solutions and Lessons Learned. ………………………………446
Appendix A: Major Suppliers of Pumps in the United States by Product Type. ………………………………………………………………………………………….449
Appendix B: Conversion Formulae. ……………………………………………………….461
References. ……………………………………………………………………………………………..473

Preface to the Third Edition

This third edition of Pump Characteristics and Applications includes two sig-nificant improvements. First, more than 150 images are presented in color for the first time. Based on feedback from participants in short courses in pumps that have used this book as the text, these color images should greatly improve the ability of readers from all backgrounds to understand the details in many cutaway and cross sectional images of pumps, seals, and other components. Similarly, color-coding permits a clear distinction between the many types of pump performance curves that are presented throughout the book, such as head–capacity, horsepower, efficiency, NPSH, and system head curves. Also included are new images of the latest generation of pumps and other components.
The second focus of this edition is a new chapter on pump case stud-ies. Students in Volk pump training classes indicate that case studies are an important learning tool for people who work with pumps. The new Chapter 9 describes in some detail a series of typical pump field problems and their solutions. Each case study includes background on the pump-related problem, an analysis of the problem, and the resulting solutions and lessons learned.
In addition to the above, the entire book was updated to reflect the latest thinking on pumps. A number of helpful new sections were added, such as the ten steps to determine total head that are summarized in Chapter 2 and the mechanical seal piping plans that are discussed and illustrated in Chapter 5.
The first two editions of the book included a demo CD of the PIPE-FLO Professional piping design and analysis software. With this third edition we have switched to a downloadable demo of the software. PIPE-FLO and other piping design and analysis software programs are discussed in some depth in Chapter 3. Use of a software tool to design or analyze a piping system should be considered if the system is complex (e.g., has multiple branches or loops, includes multiple pumps or a single pump at multiple speeds, or uses a fluid with properties much different from water). Using a software tool to size pipes and determine pump total head allows the piping and pumps to be matched more accurately to the expected demands of the system, and helps to keep the pump from being oversized, thus saving energy and reduc-ing pump maintenance costs. It also gives the system designer or operator a much better understanding of how the pump responds to changes in levels, flows, pressures, and valve positions. For more information on PIPE-FLO and to download a demo of this software, go to the following link: http://www.volkassociates.com/pipeflo.html.
In closing, I would like to invite readers who are interested in attending a more in-depth training course on pumps, either for continuing education units or simply to enhance their understanding of pumps and systems, to go the link below for information on short courses in pumps for engineers and technicians that I periodically offer at a variety of venues, including on-site at company offices (http://www.volkassociates.com/seminars.html).