Gas Turbine Heat Transfer and Cooling Technology Second Edition By JeChin Han Sandip Dutta and Srinath Ekkad

Pages 865
Views 538
Size 26.5 MiB
Downloads 52
Gas Turbine Heat Transfer and Cooling Technology Second Edition By JeChin Han Sandip Dutta and Srinath Ekkad

Tags:

Contents

Preface to the Second Edition………………………………………………………………….. xiii
Preface to the First Edition…………………………………………………………………………xv
Authors………………………………………………………………………………………………….. xvii
1. Fundamentals………………………………………………………………………………………1
1.1 Need for Turbine Blade Cooling………………………………………………….1
1.1.1 Recent Development in Aircraft Engines…………………………1
1.1.2 Recent Development in Land-Based Gas Turbines…………..3
1.2 Turbine-Cooling Technology………………………………………………………5
1.2.1 Concept of Turbine Blade Cooling…………………………………..5
1.2.2 Typical Turbine-Cooling System……………………………………..7
1.3 Turbine Heat Transfer and Cooling Issues………………………………… 14
1.3.1 Turbine Blade Heat Transfer………………………………………….. 14
1.3.2 Turbine Blade Internal Cooling…………………………………….. 18
1.3.3 Turbine Blade Film Cooling………………………………………….. 21
1.3.4 Thermal Barrier Coating and Heat Transfer………………….. 21
1.4 Structure of the Book…………………………………………………………………22
1.5 Review Articles and Book Chapters on Turbine Cooling
and Heat Transfer………………………………………………………………………23
1.6 New Information from 2000 to 2010………………………………………….. 24
1.6.1 ASME Turbo Expo Conference CDs………………………………25
1.6.2 Book Chapters and Review Articles………………………………25
1.6.3 Structure of the Revised Book……………………………………….26
References…………………………………………………………………………………………..26
2. Turbine Heat Transfer……………………………………………………………………….. 31
2.1 Introduction……………………………………………………………………………… 31
2.1.1 Combustor Outlet Velocity and Temperature Profiles…… 31
2.2 Turbine-Stage Heat Transfer………………………………………………………35
2.2.1 Introduction…………………………………………………………………..35
2.2.2 Real Engine Turbine Stage……………………………………………..35
2.2.3 Simulated Turbine Stage………………………………………………..43
2.2.4 Time-Resolved Heat-Transfer Measurements
on a Rotor Blade…………………………………………………………….49
2.3 Cascade Vane Heat-Transfer Experiments………………………………… 52
2.3.1 Introduction………………………………………………………………….. 52
2.3.2 Effect of Exit Mach Number and Reynolds Number……..53
2.3.3 Effect of Free-Stream Turbulence………………………………….. 57
iv Contents
2.3.4 Effect of Surface Roughness…………………………………………..58
2.3.5 Annular Cascade Vane Heat Transfer…………………………… 62
2.4 Cascade Blade Heat Transfer……………………………………………………..66
2.4.1 Introduction…………………………………………………………………..66
2.4.2 Unsteady Wake-Simulation Experiments……………………… 67
2.4.3 Wake-Affected Heat-Transfer Predictions……………………… 74
2.4.4 Combined Effects of Unsteady Wake and
Free-Stream Turbulence………………………………………………… 78
2.5 Airfoil Endwall Heat Transfer……………………………………………………83
2.5.1 Introduction…………………………………………………………………..83
2.5.2 Description of the Flow Field…………………………………………83
2.5.3 Endwall Heat Transfer…………………………………………………..86
2.5.4 Near-Endwall Heat Transfer………………………………………….88
2.5.5 Engine Condition Experiments……………………………………..90
2.5.6 Effect of Surface Roughness…………………………………………..92
2.6 Turbine Rotor Blade Tip Heat Transfer………………………………………94
2.6.1 Introduction…………………………………………………………………..94
2.6.2 Blade Tip Region Flow Field and Heat Transfer……………..95
2.6.3 Flat-Blade Tip Heat Transfer…………………………………………..98
2.6.4 Squealer- or Grooved-Blade-Tip Heat Transfer………………99
2.7 Leading-Edge Region Heat Transfer……………………………………….. 106
2.7.1 Introduction………………………………………………………………… 106
2.7.2 Effect of Free-Stream Turbulence………………………………… 108
2.7.3 Effect of Leading-Edge Shape……………………………………… 113
2.7.4 Effect of Unsteady Wake……………………………………………… 114
2.8 Flat-Surface Heat Transfer………………………………………………………. 118
2.8.1 Introduction………………………………………………………………… 118
2.8.2 Effect of Free-Stream Turbulence………………………………… 118
2.8.3 Effect of Pressure Gradient………………………………………….. 123
2.8.4 Effect of Streamwise Curvature…………………………………… 124
2.8.5 Surface Roughness Effects…………………………………………… 126
2.9 New Information from 2000 to 2010………………………………………… 128
2.9.1 Endwall Heat Transfer………………………………………………… 128
2.9.1.1 Endwall Contouring……………………………………… 128
2.9.1.2 Leading-Edge Modifications to Reduce
Secondary Flows…………………………………………… 130
2.9.1.3 Endwall Heat-Transfer Measurements…………… 131
2.9.2 Turbine Tip and Casing Heat Transfer………………………… 132
2.9.3 Vane-Blade Interactions………………………………………………. 136
2.9.3.1 Cascade Studies…………………………………………….. 137
2.9.4 Deposition and Roughness Effects………………………………. 138
2.9.5 Combustor–Turbine Effects…………………………………………. 139
2.9.6 Transition-Induced Effects and Modeling…………………… 141
2.10 Closure……………………………………………………………………………………. 143
References………………………………………………………………………………………… 144
Contents v
3. Turbine Film Cooling……………………………………………………………………… 159
3.1 Introduction……………………………………………………………………………. 159
3.1.1 Fundamentals of Film Cooling……………………………………. 159
3.2 Film Cooling on Rotating Turbine Blades……………………………….. 162
3.3 Film Cooling on Cascade Vane Simulations……………………………. 169
3.3.1 Introduction………………………………………………………………… 169
3.3.2 Effect of Film Cooling…………………………………………………. 171
3.3.3 Effect of Free-Stream Turbulence………………………………… 180
3.4 Film Cooling on Cascade Blade Simulations…………………………… 181
3.4.1 Introduction………………………………………………………………… 181
3.4.2 Effect of Film Cooling…………………………………………………. 182
3.4.3 Effect of Free-Stream Turbulence………………………………… 185
3.4.4 Effect of Unsteady Wake……………………………………………… 186
3.4.5 Combined Effect of Free-Stream Turbulence
and Unsteady Wakes…………………………………………………… 193
3.5 Film Cooling on Airfoil Endwalls…………………………………………… 193
3.5.1 Introduction………………………………………………………………… 193
3.5.2 Low-Speed Simulation Experiments…………………………… 193
3.5.3 Engine Condition Experiments……………………………………200
3.5.4 Near-Endwall Film Cooling………………………………………… 201
3.6 Turbine Blade Tip Film Cooling……………………………………………….204
3.6.1 Introduction…………………………………………………………………204
3.6.2 Heat-Transfer Coefficient……………………………………………..205
3.6.3 Film Effectiveness………………………………………………………..208
3.7 Leading-Edge Region Film Cooling………………………………………… 210
3.7.1 Introduction………………………………………………………………… 210
3.7.2 Effect of Coolant-to-Mainstream Blowing Ratio………….. 211
3.7.3 Effect of Free-Stream Turbulence………………………………… 213
3.7.4 Effect of Unsteady Wake……………………………………………… 218
3.7.5 Effect of Coolant-to-Mainstream Density Ratio…………… 218
3.7.6 Effect of Film Hole Geometry……………………………………… 224
3.7.7 Effect of Leading-Edge Shape………………………………………225
3.8 Flat-Surface Film Cooling………………………………………………………..226
3.8.1 Introduction…………………………………………………………………226
3.8.2 Film-Cooled, Heat-Transfer Coefficient………………………..227
3.8.2.1 Effect of Blowing Ratio…………………………………..228
3.8.2.2 Effect of Coolant-to-Mainstream Density
Ratio………………………………………………………………229
3.8.2.3 Effect of Mainstream Acceleration………………… 231
3.8.2.4 Effect of Hole Geometry…………………………………233
3.8.3 Film-Cooling Effectiveness…………………………………………. 239
3.8.3.1 Effect of Blowing Ratio………………………………….. 241
3.8.3.2 Effect of Coolant-to-Mainstream Density
Ratio……………………………………………………………… 242
3.8.3.3 Film Effectiveness Correlations…………………….. 244
vi Contents
3.8.3.4 Effect of Streamwise Curvature and
Pressure Gradient…………………………………………..250
3.8.3.5 Effect of High Free-Stream Turbulence………….255
3.8.3.6 Effect of Film Hole Geometry………………………… 257
3.8.3.7 Effect of Coolant Supply Geometry………………..260
3.8.3.8 Effect of Surface Roughness………………………….. 262
3.8.3.9 Effect of Gap Leakage……………………………………. 262
3.8.3.10 Effect of Bulk Flow Pulsations………………………. 267
3.8.3.11 Full-Coverage Film Cooling………………………….. 267
3.9 Discharge Coefficients of Turbine Cooling Holes……………………. 269
3.10 Film-Cooling Effects on Aerodynamic Losses………………………… 272
3.11 New Information from 2000 to 2010………………………………………… 276
3.11.1 Film-Cooling-Hole Geometry……………………………………… 276
3.11.1.1 Effect of Cooling-Hole Exit Shape
and Geometry……………………………………………….. 276
3.11.1.2 Trenching of Holes………………………………………… 281
3.11.1.3 Deposition and Blockage Effects on Hole
Exits……………………………………………………………….288
3.11.2 Endwall Film Cooling…………………………………………………. 289
3.11.3 Turbine Blade Tip Film Cooling……………………………………299
3.11.4 Turbine Trailing Edge Film Cooling…………………………….308
3.11.5 Airfoil Film Cooling……………………………………………………. 310
3.11.5.1 Vane Film Cooling…………………………………………. 310
3.11.5.2 Blade Film Cooling………………………………………… 311
3.11.5.3 Effect of Shocks……………………………………………… 311
3.11.5.4 Effect of Superposition on Film Effectiveness…..312
3.11.6 Novel Film-Cooling Designs……………………………………….. 313
3.12 Closure……………………………………………………………………………………. 315
References………………………………………………………………………………………… 315
4. Turbine Internal Cooling………………………………………………………………… 329
4.1 Jet Impingement Cooling………………………………………………………… 329
4.1.1 Introduction………………………………………………………………… 329
4.1.2 Heat-Transfer Enhancement by a Single Jet…………………. 329
4.1.2.1 Effect of Jet-to-Target-Plate Spacing……………….. 332
4.1.2.2 Correlation for Single Jet Impingement Heat
Transfer………………………………………………………….333
4.1.2.3 Effectiveness of Impinging Jets………………………334
4.1.2.4 Comparison of Circular to Slot Jets………………..335
4.1.3 Impingement Heat Transfer in the Midchord Region
by Jet Array………………………………………………………………….336
4.1.3.1 Jets with Large Jet-to-Jet Spacing…………………… 337
4.1.3.2 Effect of Wall-to-Jet-Array Spacing………………… 337
4.1.3.3 Cross-Flow Effect and Heat-Transfer
Correlation…………………………………………………….. 339
pjwstk|402064|1435599316
Contents vii
4.1.3.4 Effect of Initial Cross-Flow…………………………….345
4.1.3.5 Effect of Cross-Flow Direction on
Impingement Heat Transfer……………………………346
4.1.3.6 Effect of Coolant Extraction on
Impingement Heat Transfer……………………………350
4.1.3.7 Effect of Inclined Jets on Heat Transfer………….354
4.1.4 Impingement Cooling of the Leading Edge………………….355
4.1.4.1 Impingement on a Curved Surface…………………355
4.1.4.2 Impingement Heat Transfer in the Leading
Edge……………………………………………………………….356
4.2 Rib-Turbulated Cooling……………………………………………………………363
4.2.1 Introduction…………………………………………………………………363
4.2.1.1 Typical Test Facility………………………………………..366
4.2.2 Effects of Rib Layouts and Flow Parameters on
Ribbed-Channel Heat Transfer…………………………………….368
4.2.2.1 Effect of Rib Spacing on the Ribbed and
Adjacent Smooth Sidewalls……………………………. 369
4.2.2.2 Angled Ribs…………………………………………………… 370
4.2.2.3 Effect of Channel Aspect Ratio with Angled
Ribs……………………………………………………………….. 371
4.2.2.4 Comparison of Different Angled Ribs…………… 372
4.2.3 Heat-Transfer Coefficient and Friction Factor
Correlation………………………………………………………………….. 375
4.2.4 High-Performance Ribs………………………………………………..380
4.2.4.1 V-Shaped Rib…………………………………………………380
4.2.4.2 V-Shaped Broken Rib……………………………………..383
4.2.4.3 Wedge- and Delta-Shaped Rib……………………….384
4.2.5 Effect of Surface-Heating Condition……………………………. 387
4.2.6 Nonrectangular Cross-Section Channels……………………. 390
4.2.7 Effect of High Blockage-Ratio Ribs………………………………403
4.2.8 Effect of Rib Profile………………………………………………………406
4.2.9 Effect of Number of Ribbed Walls………………………………. 413
4.2.10 Effect of a 180° Sharp Turn………………………………………….. 421
4.2.11 Detailed Heat-Transfer Coefficient Measurements in
a Ribbed Channel………………………………………………………..430
4.2.12 Effect of Film-Cooling Hole on Ribbed-Channel
Heat Transfer………………………………………………………………. 437
4.3 Pin-Fin Cooling……………………………………………………………………….442
4.3.1 Introduction…………………………………………………………………442
4.3.2 Flow and Heat-Transfer Analysis with Single Pin………..446
4.3.3 Pin Array and Correlation…………………………………………… 451
4.3.4 Effect of Pin Shape on Heat Transfer…………………………… 459
4.3.5 Effect of Nonuniform Array and Flow
Convergence………………………………………………………. 464
4.3.6 Effect of Skewed Pin Array…………………………………………. 467
viii Contents
4.3.7 Partial Pin Arrangements……………………………………………. 470
4.3.8 Effect of Turning Flow…………………………………………………472
4.3.9 Pin-Fin Cooling with Ejection………………………………………472
4.3.10 Effect of Missing Pin on Heat-Transfer Coefficient………. 478
4.4 Compound and New Cooling Techniques………………………………. 479
4.4.1 Introduction………………………………………………………………… 479
4.4.2 Impingement on Ribbed Walls……………………………………. 479
4.4.3 Impingement on Pinned and Dimpled Walls……………….484
4.4.4 Combined Effect of Ribbed Wall with Grooves……………489
4.4.5 Combined Effect of Ribbed Wall with Pins and
Impingement Inlet Conditions…………………………………….. 491
4.4.6 Combined Effect of Swirl Flow and Ribs…………………….. 495
4.4.7 Impingement Heat Transfer with Perforated Baffles…….500
4.4.8 Combined Effect of Swirl and Impingement………………..504
4.4.9 Concept of Heat Pipe for Turbine Cooling……………………505
4.4.10 New Cooling Concepts………………………………………………..509
4.5 New Information from 2000 to 2010………………………………………… 510
4.5.1 Rib Turbulated Cooling………………………………………………. 510
4.5.2 Impingement Cooling on Rough Surface…………………….. 514
4.5.3 Trailing Edge Cooling…………………………………………………. 517
4.5.4 Dimpled and Pin-Finned Channels…………………………….. 518
4.5.5 Combustor Liner Cooling and Effusion Cooling…………. 519
4.5.6 Innovative Cooling Approaches and Methods……………. 523
References………………………………………………………………………………………… 525
5. Turbine Internal Cooling with Rotation………………………………………… 537
5.1 Rotational Effects on Cooling………………………………………………….. 537
5.2 Smooth-Wall Coolant Passage………………………………………………….538
5.2.1 Effect of Rotation on Flow Field…………………………………..538
5.2.2 Effect of Rotation on Heat Transfer………………………………545
5.2.2.1 Effect of Rotation Number……………………………..546
5.2.2.2 Effect of Density Ratio……………………………………547
5.2.2.3 Combined Effects of Rotation Number and
Density Ratio………………………………………………….548
5.2.2.4 Effect of Surface-Heating Condition………………550
5.2.2.5 Effect of Rotation Number and Wall-
Heating Condition………………………………………….554
5.3 Heat Transfer in a Rib-Turbulated Rotating Coolant
Passage……………………………………………………………………………. 556
5.3.1 Effect of Rotation on Rib-Turbulated Flow…………………..556
5.3.2 Effect of Rotation on Heat Transfer in Channels with
90° Ribs……………………………………………………………………….. 559
5.3.2.1 Effect of Rotation Number……………………………..560
5.3.2.2 Effect of Wall-Heating Condition…………………..563
Contents ix
5.3.3 Effect of Rotation on Heat Transfer for Channels
with Angled (Skewed) Ribs………………………………………….565
5.3.3.1 Effect of Angled Ribs and Heating
Condition…………………………………………………… 567
5.3.3.2 Comparison of Orthogonal and Angled Ribs….572
5.4 Effect of Channel Orientation with Respect to the Rotation
Direction on Both Smooth and Ribbed Channels……………………. 572
5.4.1 Effect of Rotation Number…………………………………………… 572
5.4.2 Effect of Model Orientation and Wall-Heating
Condition……………………………………………………………………. 574
5.5 Effect of Channel Cross Section on Rotating Heat Transfer…….. 582
5.5.1 Triangular Cross Section…………………………………………….. 582
5.5.2 Rectangular Channel…………………………………………………..585
5.5.3 Circular Cross Section…………………………………………………. 587
5.5.4 Two-Pass Triangular Duct……………………………………………588
5.6 Different Proposed Correlation to Relate the Heat Transfer
with Rotational Effects……………………………………………………………. 596
5.7 Heat-Mass-Transfer Analogy and Detail Measurements………….603
5.8 Rotation Effects on Smooth-Wall Impingement Cooling………….604
5.8.1 Rotation Effects on Leading-Edge Impingement
Cooling………………………………………………………………………..604
5.8.2 Rotation Effect on Midchord Impingement Cooling……. 613
5.8.3 Effect of Film-Cooling Hole………………………………………… 618
5.9 Rotational Effects on Rib-Turbulated Wall Impingement
Cooling…………………………………………………………………………………… 619
5.10 New Information from 2000 to 2010………………………………………… 623
5.10.1 Heat Transfer in Rotating Triangular Cooling
Channels…………………………………………………………………….. 625
5.10.2 Heat Transfer in Rotating Wedge-Shaped Cooling
Channels……………………………………………………………………..633
5.10.3 Effect of Aspect Ratio and Rib Configurations on
Rotating Channel Heat Transfer…………………………………..643
5.10.4 Effect of High Rotation Number and Entrance
Geometry on Rectangular Channel Heat Transfer……….666
References…………………………………………………………………………………………683
6. Experimental Methods…………………………………………………………………….689
6.1 Introduction…………………………………………………………………………….689
6.2 Heat-Transfer Measurement Techniques………………………………….689
6.2.1 Introduction…………………………………………………………………689
6.2.2 Heat Flux Gages………………………………………………………….. 690
6.2.3 Thin-Foil Heaters with Thermocouples……………………….. 693
6.2.4 Copper Plate Heaters with Thermocouples…………………. 697
6.2.5 Transient Technique……………………………………………………. 698
x Contents
6.3 Mass-Transfer Analogy Techniques………………………………………… 699
6.3.1 Introduction………………………………………………………………… 699
6.3.2 Naphthalene Sublimation Technique………………………….. 699
6.3.3 Foreign-Gas Concentration Sampling Technique………… 703
6.3.4 Swollen-Polymer Technique………………………………………… 705
6.3.5 Ammonia–Diazo Technique……………………………………….. 706
6.3.6 Pressure-Sensitive Paint Techniques…………………………… 707
6.3.7 Thermographic Phosphors………………………………………….. 710
6.4 Liquid Crystal Thermography………………………………………………… 713
6.4.1 Steady-State Yellow-Band Tracking Technique……………. 713
6.4.2 Steady-State HSI Technique…………………………………………. 714
6.4.3 Transient HSI Technique……………………………………………… 717
6.4.4 Transient Single-Color Capturing Technique………………. 719
6.5 Flow and Thermal Field Measurement Techniques………………… 726
6.5.1 Introduction………………………………………………………………… 726
6.5.2 Five-Hole Probe/Thermocouples………………………………… 726
6.5.3 Hot-Wire/Cold-Wire Anemometry………………………………728
6.5.4 Laser Doppler Velocimetry…………………………………………. 729
6.5.5 Particle Image Velocimetry…………………………………………. 731
6.5.6 Laser Holographic Interferometry……………………………….734
6.5.7 Surface Visualization……………………………………………………734
6.6 New Information from 2000 to 2010………………………………………… 739
6.6.1 Transient Thin-Film Heat Flux Gages………………………….. 739
6.6.2 Advanced Liquid Crystal Thermography……………………. 743
6.6.3 Infrared Thermography………………………………………………. 746
6.6.4 Pressure-Sensitive Paint………………………………………………. 749
6.6.5 Temperature-Sensitive Paint……………………………………….. 755
6.6.6 Flow and Thermal Field Measurements………………………. 759
6.7 Closure……………………………………………………………………………………. 761
References………………………………………………………………………………………… 761
7. Numerical Modeling………………………………………………………………………..771
7.1 Governing Equations and Turbulence Models…………………………771
7.1.1 Introduction…………………………………………………………………771
7.1.2 Governing Equations…………………………………………………..772
7.1.3 Turbulence Models………………………………………………………773
7.1.3.1 Standard k-ε Model………………………………………..773
7.1.3.2 Low-Re k-ε Model………………………………………….. 774
7.1.3.3 Two-Layer k-ε Model………………………………………775
7.1.3.4 k-ω Model……………………………………………………….775
7.1.3.5 Baldwin–Lomax Model…………………………………. 776
7.1.3.6 Second-Moment Closure Model……………………..777
7.1.3.7 Algebraic Closure Model……………………………….777
7.2 Numerical Prediction of Turbine Heat Transfer……………………….779
7.2.1 Introduction…………………………………………………………………779
Contents xi
7.2.2 Prediction of Turbine Blade/Vane Heat Transfer………….779
7.2.3 Prediction of the Endwall Heat Transfer……………………… 785
7.2.4 Prediction of Blade Tip Heat Transfer………………………….. 787
7.3 Numerical Prediction of Turbine Film Cooling……………………….. 789
7.3.1 Introduction………………………………………………………………… 789
7.3.2 Prediction of Flat-Surface Film Cooling………………………. 791
7.3.3 Prediction of Leading-Edge Film Cooling…………………… 796
7.3.4 Prediction of Turbine Blade Film Cooling……………………. 798
7.4 Numerical Prediction of Turbine Internal Cooling…………………..799
7.4.1 Introduction…………………………………………………………………799
7.4.2 Effect of Rotation………………………………………………………….799
7.4.3 Effect of 180° Turn………………………………………………………..803
7.4.4 Effect of Transverse Ribs……………………………………………..809
7.4.5 Effect of Angled Ribs……………………………………………………809
7.4.6 Effect of Rotation on Channel Shapes…………………………. 815
7.4.7 Effect of Coolant Extraction………………………………………… 818
7.5 New Information from 2000 to 2010………………………………………… 820
7.5.1 CFD for Turbine Film Cooling…………………………………….. 820
7.5.2 CFD for Turbine Internal Cooling……………………………….. 823
7.5.3 CFD for Conjugate Heat Transfer and Film Cooling……. 825
7.5.4 CFD for Turbine Heat Transfer……………………………………. 829
References…………………………………………………………………………………………830
8. Final Remarks…………………………………………………………………………………. 841
8.1 Turbine Heat Transfer and Film Cooling………………………………… 841
8.2 Turbine Internal Cooling with Rotation………………………………….. 841
8.3 Turbine Edge Heat Transfer and Cooling…………………………………842
8.4 New Information from 2000 to 2010…………………………………………842
8.5 Closure…………………………………………………………………………………….843
Index……………………………………………………………………………………………………….845

Preface to the Second Edition

This book, Gas Turbine Heat Transfer and Cooling Technology, was first published
in 2000. There have been many new technical papers available in
the open literature over the last 10 years. These new published data provide
gas turbine researchers, designers, and engineers with advanced heat
transfer analysis and cooling technology development references. There is a
need to revise the first edition by including the latest information in order
to keep this book relevant for users. The second edition provides information
on state-of-the-art cooling technologies such as advanced turbine blade
film cooling and internal cooling schemes. It updates modern experimental
methods for gas turbine heat-transfer and cooling research as well as
advanced computational models for gas turbine heat-transfer and cooling
performance predictions.
ASME Turbo Expo (IGTI International Gas Turbine Institute) has made conference
CDs available to every year’s attendees since 2000 (GT2000–GT2010).
These conference CDs contain all gas turbine heat-transfer papers presented
in each year’s IGTI conference. The number of heat transfer–related conference
papers has increased from about 100 in the year 2000 to about 200 in the
year 2010. These reviewed technical papers are widely used in gas turbine
heat transfer and added new knowledge to this field after the publication of
our first edition.
This text is a revision of the first edition, not a new book. The major contents
and framework have been based on the first edition. To keep the same
book format, the revised second edition adds new information at the end of
each chapter, mainly based on selected papers from the open literature published
in 2000–2010. The open literature has many excellent articles available
on this subject; however, we cannot use all of them in this book. To reduce
the book size, we have mainly used our own published results in the second
edition. We hope this book will be useful for the gas turbine community. We
would be happy to receive constructive comments and suggestions on the
material in the book.Gas turbines are used for aircraft propulsion and in land-based power generation
or industrial applications. Modern development in turbine-cooling
technology plays a critical role in increasing the thermal efficiency and power
output of advanced gas turbines. Research activities in turbine heat transfer
and cooling began in the early 1970s; since then, many research papers, stateof-
the-art review articles, and book chapters have been published. However,
there is no book focusing entirely on the range of gas turbine heat-transfer
issues and the associated cooling technologies.
This book is intended as a reference book for researchers and engineers
interested in working with gas turbine heat-transfer and cooling technology.
Specifically, it is for researchers and engineers who are new to the field
of turbine heat-transfer analysis and cooling design; it can also be used as
a textbook or reference book for graduate-level heat-transfer and turbomachinery
classes.
In the beginning, we thought of covering all aspects of gas turbine–related
heat-transfer and cooling problems. After careful survey, however, we
decided to focus on the heat-transfer and cooling issues related to turbine
airfoils only, because a vast amount of information on this subject alone is
available in the published literature. Assembling all the scattered information
in a single compilation requires a great deal of effort. The book does not
include combustor liner cooling and turbine disk-cooling problems although
they are important to gas turbine hot gas path component designs. The book
is divided into eight chapters:
Chapter 1 Fundamentals. Discusses the need for turbine cooling, gas turbine
heat-transfer problems, and cooling methodology
Chapter 2 Turbine Heat Transfer. Discusses turbine rotor and stator heat-transfer
issues, including endwall and blade tip region under engine conditions
as well as under simulated engine conditions
Chapter 3 Turbine Film Cooling. Includes turbine rotor and stator blade film
cooling and a discussion of the unsteady high free-stream turbulence effect
on simulated cascade airfoils
Chapter 4 Turbine Internal Cooling. Includes impingement cooling, rib-turbulated
cooling, pin-fin cooling, and compound and new cooling techniques
Chapter 5 Turbine Internal Cooling with Rotation. Discusses the effect of rotation
on rotor coolant passage heat transfer
Chapter 6 Experimental Methods. Includes heat-transfer and mass-transfer
techniques, liquid crystal thermography, optical techniques, flow and thermal
field measurement techniques
Chapter 7 Numerical Modeling. Discusses governing equations and turbulence
models and their applications for predicting turbine blade heat transfer
and film cooling and turbine blade internal cooling
Chapter 8 Final Remarks. Provides suggestions for future research in this area
The open literature has many excellent articles available on this subject;
however, we cannot use all of them in this book. We do not claim any new
ideas in this book, but we do attempt to present the topic in a systematic and
logical manner. We hope this book is a unique compilation and is useful for
the gas turbine community. We would be happy to receive constructive comments
and suggestions on the material in the book.