Modeling and Control of Hybrid Propulsion System for Ground Vehicles Yuan Zou and Junqiu Li

Pages 331
Views 270
Size 14.2 MiB
Downloads 28
Modeling and Control of Hybrid Propulsion System for Ground Vehicles Yuan Zou and Junqiu Li

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Current Situation of the Ground Vehicle Hybrid Drive System . . . 1
1.1.1 The Development History of Ground Vehicle Propulsion
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 The Current Situation and Development of Ground
Vehicle Hybrid Drive Systems . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 The Development and Technical Features of Ground
Vehicle Hybrid Drive Systems . . . . . . . . . . . . . . . . . . . . . 7
1.2 Hybrid Drive System Control Technology of Ground Vehicles . . . 9
1.2.1 Role of System Control in Hybrid Drive Systems . . . . . . . 9
1.2.2 Control Structures of Hybrid Drive System . . . . . . . . . . . . 9
1.3 Model-Based System and Control Optimization . . . . . . . . . . . . . . 12
1.3.1 Model-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 The System Optimization of Ground Vehicle Hybrid
Drive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Optimal Control of Hybrid Drive System . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Architecture of the Ground Vehicle Hybrid Drive System . . . . . . . . 23
2.1 Basic Architecture and Classification of the Hybrid
Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 Basic Architecture of the Hybrid Drive System . . . . . . . . . 23
2.1.2 Classification of the Hybrid Drive System . . . . . . . . . . . . . 26
2.2 Hybrid Drive System for Wheeled Vehicles . . . . . . . . . . . . . . . . . 33
2.2.1 Serial Hybrid Drive System . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Parallel Hybrid Drive System . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Serial–Parallel Hybrid Drive System . . . . . . . . . . . . . . . . . 38
2.3 Hybrid Drive System for Tracked Vehicle . . . . . . . . . . . . . . . . . . 42
2.3.1 Series Hybrid Drive System . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Parallel and Serial–Parallel Hybrid Drive System. . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3 Modeling and Simulation Technology for Ground Vehicle Hybrid
Propulsion System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 The Challenge of the Modeling and Simulation
of a Hybrid Powertrain System . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Models of a Ground Vehicle and Hybrid Powertrain System . . . . . 56
3.2.1 The Vehicle Dynamics Model . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Engine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Transmission System Model . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.4 Energy Storage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.5 Motor System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.6 Electric Power Bus and Power Converter Model . . . . . . . . 86
3.3 Ground Vehicle Hybrid Powertrain System Simulation
Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.1 Control-oriented System Simulation Technology . . . . . . . . 89
3.3.2 Simulation Software and Environment . . . . . . . . . . . . . . . 92
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 The Modeling and Identification of Lithium-Ion Battery System . . . 99
4.1 The Categories and Comparison of Vehicle Power Battery . . . . . . 99
4.2 The Categories and Comparison of Vehicle
Lithium-Ion Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 The Categories of Models of Lithium-Ion Batteries . . . . . . . . . . . 102
4.3.1 Electrochemical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Black-Box Battery Model. . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.3 Equivalent Circuit Model . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 The Application of Lithium-Ion Battery Model in Vehicle-Level
Simulation and Battery Management . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 The Application of Lithium-Ion Battery Model in Vehicle
Energy Management Strategy Simulation . . . . . . . . . . . . . 104
4.4.2 The Application of Lithium-Ion Battery Model in Battery
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5 The Identification Methods of Lithium-Ion Battery Model. . . . . . . 107
4.6 Optimal Estimation Methods of Lithium-Ion Battery States . . . . . . 108
4.6.1 Filter Coefficients and Adjustment . . . . . . . . . . . . . . . . . . 109
4.6.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.7.1 The Linear Battery Model Identification Based on Least
Square Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.7.2 The Nonlinear Battery Model Identification Based on
Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.7.3 Optimal Kalman Filter-Based SOC and SOH Estimation
of Lithium-Ion Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5 Optimal Control and System Optimization of Ground Vehicle
Hybrid Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.1 Mathematic Fundamental of Ground Vehicle Hybrid Drive
System Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.1.1 Deterministic Dynamic Programming Theory
and Fundamental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.2 Stochastic Dynamic Programming Theory and
Fundamental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.3 Pontryagin’s Minimum Principle Fundamental. . . . . . . . . . 150
5.2 Optimal Control of Parallel Hybrid Commercial Vehicle
Based on Deterministic Dynamic Programming . . . . . . . . . . . . . . 153
5.2.1 Vehicle Structure and Its Component Modeling . . . . . . . . . 153
5.2.2 Static Optimization-Based Control Design . . . . . . . . . . . . . 161
5.2.3 Optimal Energy Management for Hybrid
Electric Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.3 Pontryagin’s Minimum Principle-Based Energy Management
for a Parallel Hybrid Electric Vehicle . . . . . . . . . . . . . . . . . . . . . 174
5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.3.2 PMP-Based Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.4 Optimal Control Based on Stochastic Dynamic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.4.1 Hybrid Tracked Vehicle Powertrain and Modeling. . . . . . . 182
5.4.2 SDP-Based Optimal Control Design . . . . . . . . . . . . . . . . . 184
5.4.3 Results Discussion and Conclusions . . . . . . . . . . . . . . . . . 189
5.5 Combined Optimal Design for System Parameters and Control . . . 192
5.5.1 Coupled Optimization of System Parameter
and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.5.2 Combined Parameter and Control Optimization Based
on Optimal Control Theory . . . . . . . . . . . . . . . . . . . . . . . 193
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6 The Nonlinear Programming Optimal Control of a Hybrid
Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.1 The Conversion of the Optimal Control Problem to the Nonlinear
Programming Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.1.1 The Indirect Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.1.2 The Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.2 The Theoretical Basis of Pseudo-Spectral Method . . . . . . . . . . . . 208
6.2.1 Discretization of State and Control Variables . . . . . . . . . . 210
6.2.2 Differential Matrix and Derivative Approximation . . . . . . . 211
6.2.3 The Solution to the NLP Problem. . . . . . . . . . . . . . . . . . . 212
Contents vii
6.3 The Solution to A Hybrid Vehicle Optimal Control Problem . . . . 213
6.3.1 The Vehicle Model and Problem Formulation . . . . . . . . . . 213
6.3.2 The Result Analysis and Comparison . . . . . . . . . . . . . . . . 215
6.4 Convex Optimization Fundamental . . . . . . . . . . . . . . . . . . . . . . . 218
6.4.1 The Significance and Advantages of Convex
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.4.2 Convex Optimization Concept . . . . . . . . . . . . . . . . . . . . . 219
6.5 Dimensioning and Power Management of the Hybrid Energy
Storage System in a Fuel Cell Hybrid Electric Bus . . . . . . . . . . . . 220
6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.5.2 Modeling of Fuel Cell Hybrid Bus Powertrain . . . . . . . . . 221
6.5.3 Battery SOH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.5.4 Convex Optimization Framework for HESS Sizing
and Energy Management . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.5.5 Optimization Results with Different Replacement
Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.5.6 Comparison with Optimization Scenario Neglecting
Battery SOH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.5.7 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7 Application of Hybrid Drive System Modeling and Control
for Wheeled Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.1 Optimal Control of Power-Split Hybrid Drive System. . . . . . . . . . 247
7.1.1 Hybrid Drive System Model. . . . . . . . . . . . . . . . . . . . . . . 248
7.1.2 Optimal Control of Power-Split Hybrid Drive System . . . . 253
7.1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.2 Real-Time Simulation of Parallel Hybrid Vehicle Commercial
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.2.1 dSPACE-Based Hardware-In-Loop (HIL) Simulation . . . . . 261
7.2.2 Hybrid Commercial Vehicle “Driver–Vehicle Control
Unit” in Loop Real-Time Simulation Platform . . . . . . . . . . 262
7.2.3 Real-Time Simulation of Hybrid Commercial Vehicle
“Driver–Vehicle Control Unit” In-loop . . . . . . . . . . . . . . . 266
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8 Application of Hybrid Drive System Modeling and Control
for Tracked Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.1 Modeling and Control for Hybrid High-Speed
Tracked Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.1.1 Parameter Matching of Hybrid Drive System for the
High-Speed Dual-motor Drive Tracked Vehicle . . . . . . . . . 272
8.1.2 Control Strategy Design for the High-Speed Tracked
Vehicle Driven by Dual Independent Motors . . . . . . . . . . . 281
viii Contents
8.2 A Case Study: The Hybrid-Tracked Bulldozer . . . . . . . . . . . . . . . 306
8.2.1 Modeling for Driving System of Hybrid-Tracked
Bulldozer and Parameter Matching . . . . . . . . . . . . . . . . . . 306
8.2.2 Control Design for Hybrid Bulldozer . . . . . . . . . . . . . . . . 317
8.2.3 Rapid Control Simulation Engineering for a Hybrid
Bulldozer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Contents ix