Microelectronics 2nd Edition Jerry C. Whitaker

Pages 435
Views 776
Microelectronics 2nd Edition Jerry C. Whitaker

Tags:

Preface

The discipline of microelectronics has played a fundamental role in shaping the electronics industry, as
well as related industries that rely on electronic components and subsystems. In a realm where changes
happen frequently and dramatically, the constant themes that have persisted are miniaturization, increased
speed, reduced power consumption, and reduced cost. These effects have resulted in an increased demand
for microelectronics in all sectors of consumer, industrial, and military products. Advancements in manufacturing
have enabled these devices to be produced in very high volumes, thereby reducing the cost per
device. In turn, the lower cost fuels future demand which pushes the industry for further miniaturization
and higher volume manufacturing.
The combination of reduced size, increased speed, and increased capacity of microelectronics devices
was first observed by Gordon E. Moore (the legendary Chairman of Intel)who during the 1960s commented
that the feature size of semiconductor transistors reduced by 10 percent per year. In fact, the reduction has
been even more dramatic than that. The capacity of dynamic random access memory (DRAM) integrated
circuits has quadrupled approximately every three years. The increased density of transistors contained in
microelectronic devices has resulted in a phenomenon of virtually “free computing power.”
The digital revolution of the 1980s ushered in the so-called Information Age, and with it came substantial
growth of data recording systems, primarily associated with the desktop computer. The transition to digital
systems is far from complete, but it has already had far-reaching impact. Perhaps most important is the
nearly universal usability of digital information. Any form of expression that can be quantified can be
turned into a digital bit stream, and carried in tandem with any other type of expression.
Computers manipulate data and in this context they can be thought of as the engines necessary to
organize and access information. Computers are rapidly changing the world—from the workplace to the
home—ranging from traditional stand-alone mainframes to embedded computational devices. Almost
every piece of equipment or appliance contains one or more microprocessors.
The market demand for microelectronics has evolved from largely a military-driven demand to one that
is now largely consumer-driven. Consequently, the device features have also been targeted at consumer
needs, such as low power, low cost, and mass market applications, rather than military needs, such as
meeting military specifications for reliability and packaging, specialized applications, and the resulting
high cost of such devices. The performance of microelectronics is measured, thus, from the viewpoint of
the technological aspects of the device, as well as from the viewpoint of end user effectiveness. The goal is
to enable the end user of the devices to perform complex tasks in a more efficient manner than what was
previously possible.
This Handbook focuses on the technological issues within specific microelectronic technologies and
examines how they affect the push of technology that drives the next generation of microelectronics.
The chapters describe the three primary elements of microelectronics technology: materials, devices, and
applications.
This Handbook strives to give the reader a broad understanding of the technologies shaping microelectronics
and how these technologies affect the end uses of the devices.

Contents

1 Semiconductor Materials
Stuart K. Tewksbury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
2 Thermal Properties
David F. Besch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
3 Semiconductors
Sidney Soclof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
4 Metal-Oxide-Semiconductor Field-Effect Transistor
John R. Brews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
5 Integrated Circuits
Tom Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
6 Integrated Circuit Design
Samuel O. Agbo and Eugene D. Fabricius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
7 Digital Logic Families
Robert J. Feugate, Jr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
8 Memory Devices
Shih-Lien Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
9 Microprocessors
James G. Cottle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
10 D/A and A/D Converters
Susan A. Garrod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
11 Application-Specific Integrated Circuits
Constantine N. Anagnostopoulos and Paul P.K. Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11-1
12 Digital Filters
Jonathon A. Chambers, Sawasd Tantaratana and Bruce W. Bomar . . . . . . . . . . . . . . . . . 12-1
13 Multichip Module Technology
Paul D. Franzon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1
© 2006 by Taylor & Francis Group, LLC
14 Testing of Integrated Circuits
Wayne Needham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1
15 Semiconductor Failure Modes
Victor Meeldijk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1
16 Fundamental Computer Architecture
Joy S. Shetler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1
17 Software Design and Development
Margaret H. Hamilton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1
18 Neural Networks and Fuzzy Systems
Bogdan M. Wilamowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1
19 Machine Vision
David A. Kosiba and Rangachar Kasturi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1
20 A Brief Survey of Speech Enhancement
Yariv Ephraim, Hanoch Lev-Ari and William J.J. Roberts . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1
21 Ad Hoc Networks
Michel D. Yacoub, Paulo Cardieri, ´ Elvio Jo˜ao Leonardo,
´ Alvaro Augusto Machado Medeiros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1
22 Network Communication
James E. Goldman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22-1
23 Printing Technologies and Systems
John D. Meyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1
24 Data Storage Systems
Jerry C. Whitaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1
25 Optical Storage Systems
Praveen Asthana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1