Engineering Thermodynamics 3rd edition by RK Rajput

Pages 966
Views 2,759
Size 6.2 MiB
Downloads 221
Engineering Thermodynamics 3rd edition by RK Rajput

Tags:

Contents

Introduction to S.I. Units and Conversion Factors (xvi)—(xx)
Nomenclature (xxi)—(xxii)
1. INTRODUCTION—OUTLINE OF SOME DESCRIPTIVE SYSTEMS … 1—13
1.1. Steam Power Plant … 1
1.1.1. Layout … 1
1.1.2. Components of a modern steam power plant … 2
1.2. Nuclear Power Plant … 3
1.3. Internal Combustion Engines … 4
1.3.1. Heat engines … 4
1.3.2. Development of I.C. engines … 4
1.3.3. Different parts of I.C. engines … 4
1.3.4. Spark ignition (S.I.) engines … 5
1.3.5. Compression ignition (C.I.) engines … 7
1.4. Gas Turbines … 7
1.4.1. General aspects … 7
1.4.2. Classification of gas turbines … 8
1.4.3. Merits and demerits of gas turbines … 8
1.4.4. A simple gas turbine plant … 9
1.4.5. Energy cycle for a simple-cycle gas turbine … 10
1.5. Refrigeration Systems … 10
Highlights … 12
Theoretical Questions … 13
2. BASIC CONCEPTS OF THERMODYNAMICS … 14—62
2.1. Introduction to Kinetic Theory of Gases … 14
2.2. Definition of Thermodynamics … 18
2.3. Thermodynamic Systems … 18
2.3.1. System, boundary and surroundings … 18
2.3.2. Closed system … 18
2.3.3. Open system … 19
2.3.4. Isolated system … 19
2.3.5. Adiabatic system … 19
2.3.6. Homogeneous system … 19
2.3.7. Heterogeneous system … 19
2.4. Macroscopic and Microscopic Points of View … 19
2.5. Pure Substance … 20
2.6. Thermodynamic Equilibrium … 20
2.7. Properties of Systems … 21
2.8. State … 21
DHARM
M-therm\TITLE.PM5 v i i
Chapter Pages
( vii )
2.9. Process … 21
2.10. Cycle … 22
2.11. Point Function … 22
2.12. Path Function … 22
2.13. Temperature … 23
2.14. Zeroth Law of Thermodynamics … 23
2.15. The Thermometer and Thermometric Property … 24
2.15.1. Introduction … 24
2.15.2. Measurement of temperature … 24
2.15.3. The international practical temperature scale … 31
2.15.4. Ideal gas … 33
2.16. Pressure … 33
2.16.1. Definition of pressure … 33
2.16.2. Unit for pressure … 34
2.16.3. Types of pressure measurement devices … 34
2.16.4. Mechanical type instruments … 34
2.17. Specific Volume … 45
2.18. Reversible and Irreversible Processes … 46
2.19. Energy, Work and Heat … 46
2.19.1. Energy … 46
2.19.2. Work and heat … 46
2.20. Reversible Work … 48
Highlights … 58
Objective Type Questions … 59
Theoretical Questions … 61
Unsolved Examples … 61
3. PROPERTIES OF PURE SUBSTANCES … 63—100
3.1. Definition of the Pure Substance … 63
3.2. Phase Change of a Pure Substance … 64
3.3. p-T (Pressure-temperature) Diagram for a Pure Substance … 66
3.4. p-V-T (Pressure-Volume-Temperature) Surface … 67
3.5. Phase Change Terminology and Definitions … 67
3.6. Property Diagrams in Common Use … 68
3.7. Formation of Steam … 68
3.8. Important Terms Relating to Steam Formation … 70
3.9. Thermodynamic Properties of Steam and Steam Tables … 72
3.10. External Work Done During Evaporation … 73
3.11. Internal Latent Heat … 73
3.12. Internal Energy of Steam … 73
3.13. Entropy of Water … 73
3.14. Entropy of Evaporation … 73
3.15. Entropy of Wet Steam … 74
3.16. Entropy of Superheated Steam … 74
3.17. Enthalpy-Entropy (h-s) Chart or Mollier Diagram … 75
DHARM
M-therm\TITLE.PM5 v i i i
Chapter Pages
( viii )
3.18. Determination of Dryness Fraction of Steam … 89
3.18.1. Tank or bucket calorimeter … 89
3.18.2. Throttling calorimeter … 92
3.18.3. Separating and throttling calorimeter … 93
Highlights … 96
Objective Type Questions … 97
Theoretical Questions … 99
Unsolved Examples … 99
4. FIRST LAW OF THERMODYNAMICS … 101—226
4.1. Internal Energy … 101
4.2. Law of Conservation of Energy … 101
4.3. First Law of Thermodynamics … 101
4.4. Application of First Law to a Process … 103
4.5. Energy—A Property of System … 103
4.6. Perpetual Motion Machine of the First Kind-PMM1 … 104
4.7. Energy of an Isolated System … 105
4.8. The Perfect Gas … 105
4.8.1. The characteristic equation of state … 105
4.8.2. Specific heats … 106
4.8.3. Joule’s law … 107
4.8.4. Relationship between two specific heats … 107
4.8.5. Enthalpy … 108
4.8.6. Ratio of specific heats … 109
4.9. Application of First Law of Thermodynamics to Non-flow or Closed
System … 109
4.10. Application of First Law to Steady Flow Process … 150
4.11. Energy Relations for Flow Process … 152
4.12. Engineering Applications of Steady Flow Energy Equation (S.F.E.E.) … 155
4.12.1. Water turbine … 155
4.12.2. Steam or gas turbine … 156
4.12.3. Centrifugal water pump … 157
4.12.4. Centrifugal compressor … 157
4.12.5. Reciprocating compressor … 158
4.12.6. Boiler … 159
4.12.7. Condenser … 159
4.12.8. Evaporator … 160
4.12.9. Steam nozzle … 161
4.13. Throttling Process and Joule-Thompson Porous Plug Experiment … 162
4.14. Heating-Cooling and Expansion of Vapours … 183
4.15. Unsteady Flow Processes … 210
Highlights … 215
Objective Type Questions … 216
Theoretical Questions … 219
Unsolved Examples … 219
DHARM
M-therm\TITLE.PM5 i x
Chapter Pages
( ix )
5. SECOND LAW OF THERMODYNAMICS AND ENTROPY … 227—305
5.1. Limitations of First Law of Thermodynamics and Introduction to
Second Law … 227
5.2. Performance of Heat Engines and Reversed Heat Engines … 227
5.3. Reversible Processes … 228
5.4. Statements of Second Law of Thermodynamics … 229
5.4.1. Clausius statement … 229
5.4.2. Kelvin-Planck statement … 229
5.4.3. Equivalence of Clausius statement to the Kelvin-Planck
statement … 229
5.5. Perpetual Motion Machine of the Second Kind … 230
5.6. Thermodynamic Temperature … 231
5.7. Clausius Inequality … 231
5.8. Carnot Cycle … 233
5.9. Carnot’s Theorem … 235
5.10. Corollary of Carnot’s Theorem … 237
5.11. Efficiency of the Reversible Heat Engine … 237
5.12. Entropy … 252
5.12.1. Introduction … 252
5.12.2. Entropy—a property of a system … 252
5.12.3. Change of entropy in a reversible process … 253
5.13. Entropy and Irreversibility … 254
5.14. Change in Entropy of the Universe … 255
5.15. Temperature Entropy Diagram … 257
5.16. Characteristics of Entropy … 257
5.17. Entropy Changes for a Closed System … 258
5.17.1. General case for change of entropy of a gas … 258
5.17.2. Heating a gas at constant volume … 259
5.17.3. Heating a gas at constant pressure … 260
5.17.4. Isothermal process … 260
5.17.5. Adiabatic process (reversible) … 261
5.17.6. Polytropic process … 262
5.17.7. Approximation for heat absorbed … 263
5.18. Entropy Changes for an Open System … 264
5.19. The Third Law of Thermodynamics … 265
Highlights … 298
Objective Type Questions … 299
Theoretical Questions … 302
Unsolved Examples … 302
6. AVAILABILITY AND IRREVERSIBILITY … 306—340
6.1. Available and Unavailable Energy … 306
6.2. Available Energy Referred to a Cycle … 306
6.3. Decrease in Available Energy When Heat is Transferred Through
a Finite Temperature Difference … 308
6.4. Availability in Non-flow Systems … 310
DHARM
M-therm\TITLE.PM5 x
Chapter Pages
( x )
6.5. Availability in Steady-flow Systems … 311
6.6. Helmholtz and Gibb’s Functions … 311
6.7. Irreversibility … 312
6.8. Effectiveness … 313
Highlights … 336
Objective Type Questions … 337
Theoretical Questions … 338
Unsolved Examples … 338
7. THERMODYNAMIC RELATIONS … 341—375
7.1. General Aspects … 341
7.2. Fundamentals of Partial Differentiation … 341
7.3. Some General Thermodynamic Relations … 343
7.4. Entropy Equations (Tds Equations) … 344
7.5. Equations for Internal Energy and Enthalpy … 345
7.6. Measurable Quantities … 346
7.6.1. Equation of state … 346
7.6.2. Co-efficient of expansion and compressibility … 347
7.6.3. Specific heats … 348
7.6.4. Joule-Thomson co-efficient … 351
7.7. Clausius-Claperyon Equation … 353
Highlights … 373
Objective Type Questions … 374
Exercises … 375
8. IDEAL AND REAL GASES … 376—410
8.1. Introduction … 376
8.2. The Equation of State for a Perfect Gas … 376
8.3. p-V-T Surface of an Ideal Gas … 379
8.4. Internal Energy and Enthalpy of a Perfect Gas … 379
8.5. Specific Heat Capacities of an Ideal Gas … 380
8.6. Real Gases … 381
8.7. Van der Waal’s Equation … 381
8.8. Virial Equation of State … 390
8.9. Beattie-Bridgeman Equation … 390
8.10. Reduced Properties … 391
8.11. Law of Corresponding States … 392
8.12. Compressibility Chart … 392
Highlights … 407
Objective Type Questions … 408
Theoretical Questions … 408
Unsolved Examples … 409
9. GASES AND VAPOUR MIXTURES … 411—448
9.1. Introduction … 411
DHARM
M-therm\TITLE.PM5 x i
Chapter Pages
( xi )
9.2. Dalton’s Law and Gibbs-Dalton Law … 411
9.3. Volumetric Analysis of a Gas Mixture … 413
9.4. The Apparent Molecular Weight and Gas Constant … 414
9.5. Specific Heats of a Gas Mixture … 417
9.6. Adiabatic Mixing of Perfect Gases … 418
9.7. Gas and Vapour Mixtures … 419
Highlights … 444
Objective Type Questions … 444
Theoretical Questions … 445
Unsolved Examples … 445
10. PSYCHROMETRICS … 449—486
10.1. Concept of Psychrometry and Psychrometrics … 449
10.2. Definitions … 449
10.3. Psychrometric Relations … 450
10.4. Psychrometers … 455
10.5. Psychrometric Charts … 456
10.6. Psychrometric Processes … 458
10.6.1. Mixing of air streams … 458
10.6.2. Sensible heating … 459
10.6.3. Sensible cooling … 460
10.6.4. Cooling and dehumidification … 461
10.6.5. Cooling and humidification … 462
10.6.6. Heating and dehumidification … 463
10.6.7. Heating and humidification … 463
Highlights … 483
Objective Type Questions … 483
Theoretical Questions … 484
Unsolved Examples … 485
11. CHEMICAL THERMODYNAMICS … 487—592
11.1. Introduction … 487
11.2. Classification of Fuels … 487
11.3. Solid Fuels … 488
11.4. Liquid Fuels … 489
11.5. Gaseous Fuels … 489
11.6. Basic Chemistry … 490
11.7. Combustion Equations … 491
11.8. Theoretical Air and Excess Air … 493
11.9. Stoichiometric Air Fuel (A/F) Ratio … 493
11.10. Air-Fuel Ratio from Analysis of Products … 494
11.11. How to Convert Volumetric Analysis to Weight Analysis … 494
11.12. How to Convert Weight Analysis to Volumetric Analysis … 494
11.13. Weight of Carbon in Flue Gases … 494
11.14. Weight of Flue Gases per kg of Fuel Burnt … 495
11.15. Analysis of Exhaust and Flue Gas … 495
DHARM
M-therm\TITLE.PM5 x i i
Chapter Pages
( xii )
11.16. Internal Energy and Enthalpy of Reaction … 497
11.17. Enthalpy of Formation (ΔHf) … 500
11.18. Calorific or Heating Values of Fuels … 501
11.19. Determination of Calorific or Heating Values … 501
11.19.1. Solid and Liquid Fuels … 502
11.19.2. Gaseous Fuels … 504
11.20. Adiabatic Flame Temperature … 506
11.21. Chemical Equilibrium … 506
11.22. Actual Combustion Analysis … 507
Highlights … 537
Objective Type Questions … 538
Theoretical Questions … 539
Unsolved Examples … 540
12. VAPOUR POWER CYCLES … 543—603
12.1. Carnot Cycle … 543
12.2. Rankine Cycle … 544
12.3. Modified Rankine Cycle … 557
12.4. Regenerative Cycle … 562
12.5. Reheat Cycle … 576
12.6. Binary Vapour Cycle … 584
Highlights … 601
Objective Type Questions … 601
Theoretical Questions … 602
Unsolved Examples … 603
13. GAS POWER CYCLES … 604—712
13.1. Definition of a Cycle … 604
13.2. Air Standard Efficiency … 604
13.3. The Carnot Cycle … 605
13.4. Constant Volume or Otto Cycle … 613
13.5. Constant Pressure or Diesel Cycle … 629
13.6. Dual Combustion Cycle … 639
13.7. Comparison of Otto, Diesel and Dual Combustion Cycles … 655
13.7.1. Efficiency versus compression ratio … 655
13.7.2. For the same compression ratio and the same heat input … 655
13.7.3. For constant maximum pressure and heat supplied … 656
13.8. Atkinson Cycle … 657
13.9. Ericsson Cycle … 660
13.10. Gas Turbine Cycle-Brayton Cycle … 661
13.10.1. Ideal Brayton cycle … 661
13.10.2. Pressure ratio for maximum work … 663
13.10.3. Work ratio … 664
13.10.4. Open cycle gas turbine-actual brayton cycle … 665
13.10.5. Methods for improvement of thermal efficiency of open cycle
gas turbine plant … 667
DHARM
M-therm\TITLE.PM5 x i i i
Chapter Pages
( xiii )
13.10.6. Effect of operating variables on thermal efficiency … 671
13.10.7. Closed cycle gas turbine … 674
13.10.8. Gas turbine fuels … 679
Highlights … 706
Theoretical Questions … 707
Objective Type Questions … 707
Unsolved Examples … 709
14. REFRIGERATION CYCLES … 713—777
14.1. Fundamentals of Refrigeration … 713
14.1.1. Introduction … 713
14.1.2. Elements of refrigeration systems … 714
14.1.3. Refrigeration systems … 714
14.1.4. Co-efficient of performance (C.O.P.) … 714
14.1.5. Standard rating of a refrigeration machine … 715
14.2. Air Refrigeration System … 715
14.2.1. Introduction … 715
14.2.2. Reversed Carnot cycle … 716
14.2.3. Reversed Brayton cycle … 722
14.2.4. Merits and demerits of air refrigeration system … 724
14.3. Simple Vapour Compression System … 730
14.3.1. Introduction … 730
14.3.2. Simple vapour compression cycle … 730
14.3.3. Functions of parts of a simple vapour compression system … 731
14.3.4. Vapour compression cycle on temperature-entropy (T-s) diagram … 732
14.3.5. Pressure-enthalpy (p-h) chart … 734
14.3.6. Simple vapour compression cycle on p-h chart … 735
14.3.7. Factors affecting the performance of a vapour compression
system … 736
14.3.8. Actual vapour compression cycle … 737
14.3.9. Volumetric efficiency … 739
14.3.10. Mathematical analysis of vapour compression refrigeration … 740
14.4. Vapour Absorption System … 741
14.4.1. Introduction … 741
14.4.2. Simple vapour absorption system … 742
14.4.3. Practical vapour absorption system … 743
14.4.4. Comparison between vapour compression and vapour
absorption systems … 744
14.5. Refrigerants … 764
14.5.1. Classification of refrigerants … 764
14.5.2. Desirable properties of an ideal refrigerant … 766
14.5.3. Properties and uses of commonly used refrigerants … 768
Highlights … 771
Objective Type Questions … 772
Theoretical Questions … 773
Unsolved Examples … 774
DHARM
M-therm\TITLE.PM5 x i v
Chapter Pages
( xiv )
15. HEAT TRANSFER … 778—856
15.1. Modes of Heat Transfer … 778
15.2. Heat Transmission by Conduction … 778
15.2.1. Fourier’s law of conduction … 778
15.2.2. Thermal conductivity of materials … 780
15.2.3. Thermal resistance (Rth) … 782
15.2.4. General heat conduction equation in cartesian coordinates … 783
15.2.5. Heat conduction through plane and composite walls … 787
15.2.6. The overall heat transfer coefficient … 790
15.2.7. Heat conduction through hollow and composite cylinders … 799
15.2.8. Heat conduction through hollow and composite spheres … 805
15.2.9. Critical thickness of insulation … 808
15.3. Heat Transfer by Convection … 812
15.4. Heat Exchangers … 815
15.4.1. Introduction … 815
15.4.2. Types of heat exchangers … 815
15.4.3. Heat exchanger analysis … 820
15.4.4. Logarithmic temperature difference (LMTD) … 821
15.5. Heat Transfer by Radiation … 832
15.5.1. Introduction … 832
15.5.2. Surface emission properties … 833
15.5.3. Absorptivity, reflectivity and transmittivity … 834
15.5.4. Concept of a black body … 836
15.5.5. The Stefan-Boltzmann law … 836
15.5.6. Kirchhoff ’s law … 837
15.5.7. Planck’s law … 837
15.5.8. Wien’s displacement law … 839
15.5.9. Intensity of radiation and Lambert’s cosine law … 840
15.5.10. Radiation exchange between black bodies separated by a
non-absorbing medium … 843
Highlights … 851
Objective Type Questions … 852
Theoretical Questions … 854
Unsolved Examples … 854
16. COMPRESSIBLE FLOW … 857—903
16.1. Introduction … 857
16.2. Basic Equations of Compressible Fluid Flow … 857
16.2.1. Continuity equation … 857
16.2.2. Momentum equation … 858
16.2.3. Bernoulli’s or energy equation … 858
16.3. Propagation of Disturbances in Fluid and Velocity of Sound … 862
16.3.1. Derivation of sonic velocity (velocity of sound) … 862
16.3.2. Sonic velocity in terms of bulk modulus … 864
16.3.3. Sonic velocity for isothermal process … 864
16.3.4. Sonic velocity for adiabatic process … 865
DHARM
M-therm\TITLE.PM5 x v
16.4. Mach Number … 865
16.5. Propagation of Disturbance in Compressible Fluid … 866
16.6. Stagnation Properties … 869
16.6.1. Expression for stagnation pressure (ps) in compressible flow … 869
16.6.2. Expression for stagnation density (ρs) … 872
16.6.3. Expression for stagnation temperature (Ts) … 872
16.7. Area—Velocity Relationship and Effect of Variation of Area for
Subsonic, Sonic and Supersonic Flows … 876
16.8. Flow of Compressible Fluid Through a Convergent Nozzle … 878
16.9. Variables of Flow in Terms of Mach Number … 883
16.10. Flow Through Laval Nozzle (Convergent-divergent Nozzle) … 886
16.11. Shock Waves … 892
16.11.1. Normal shock wave … 892
16.11.2. Oblique shock wave … 895
16.11.3. Shock Strength … 895
Highlights … 896
Objective Type Questions … 899
Theoretical Questions … 901
Unsolved Examples … 902
 Competitive Examinations Questions with Answers … 904—919
Index … 920—922
 Steam Tables and Mollier Diagram … (i)—(xx)
Chapter