Atomic Information Technology Safety and Economy of Nuclear Power Plants Taeho Woo

Pages 184
Views 158
Size 5.6 MiB
Downloads 4
Atomic Information Technology Safety and Economy of Nuclear Power Plants Taeho Woo

Tags:

Preface

Information technology (IT) is being used in our lives widely. Today, we cannot
live without many kinds of communication devices like the smart phone, iPhone,
or desktop computer. Therefore, it is important to make use of the skills of IT in
the specified industry. IT has a critical role in the nuclear industry. The nuclear
industry has developed for more than half a century; nuclear energy supplies have
been accomplished in some countries and other nations would like to construct
new nuclear power plants (NPPs). Thus IT could impact the nuclear industry
significantly.
This book gives the data estimations in the aspects of safety and economy in the
nuclear market. Although IT is usually defined as hardware and software, there are
data manipulations which are crucial strategies of NPPs. Safety is a traditional
topic of nuclear study. This is expressed in this book as the nonlinear algorithm for
artificial intelligence and business management tools. The fuzzy set theory, neural
network theory, genetic algorithm, and system dynamics (SD) have been used for
the quantification of relevant accident scenarios. The severest accidents are well
known in the industry as Three Mile Island (TMI), Chernobyl, and Fukushima
cases where devastating damages had affected to the public. This indicates that
electrical power shortages as well as radiation hazards are simultaneously in turmoil.
Hence, the economy and safety are closely related, although they are in
adverse positions. If the safety enhancement investment increases, the economy of
the plant will decrease. However, the accident possibility of power production
could decrease. We know very well that reasonable compensation of safety and
economy is extremely important in the management of NPPs. But, in the case of
the Fukushima accident, it was impossible to prepare for the accident, because the
Richter scale of the earthquake was 9.0 which was more than the designed scale of
6.5. So, assessments in safety or economy should give suggestions, predictions, or
other kinds of opinions. The current technology, unfortunately, cannot estimate
exactly natural disasters like the case of the Fukushima NPP. It is needed to design
how to control the disaster. This book can give the reader a hint for solution of the
unexpected events. Non-linear logics that are used for the imaginations of accident
scenarios, are expressed in this book.
There are several example topics in this book. These can be applied to many
kinds of stuffs. In future, the most developed technology in IT could save the NPPs
from the devastating accidents like the previous three cases. For example, realtime
safety assessment is easily possible using the portable communication system.
In addition, the hologram communication could give the visualized data processing
easily.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Fuzzy Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Dynamical Modeling of Economy in Global Nuclear
Energy Market. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Assessment of National Nuclear Fuel Cycle for Transmutations
of High Level Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Dynamical Management of Atomic-Multinology in the Aspect
of Energy Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ix
4.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5 Technological Management of Atomic-Multinology
by Social Network Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6 Nuclear Safety Assessment for the Passive System of the Nuclear
Power Plants (NPPs) in Safety Margin Estimation. . . . . . . . . . . . 61
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 Results and Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7 Non-linear Dynamical Reliability Analysis in the Very High
Temperature Gas Cooled Reactor . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Dynamics of the Resistance-Stress Method . . . . . . . . . . . . . . 76
7.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5 Results and Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8 Dynamical Seismic Probabilistic Safety Assessment
for Earthquake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
x Contents
9 Safety Assessment for Lunar Nuclear Power Reactor
in Cooling Accident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10 Nuclear Safeguard Management of Operation Security
in Nuclear Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.2 Factors for Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.2.1 Safeguard Measures Factor . . . . . . . . . . . . . . . . . . . 121
10.2.2 Power Uprates Factor . . . . . . . . . . . . . . . . . . . . . . . 123
10.2.3 Refueling Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.3 Dynamical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.3.1 Network Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.3.2 Calculation of Modeling . . . . . . . . . . . . . . . . . . . . . 128
10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11 Life Extension Assessment for Safeguard in Nuclear
Power Plants (NPPs) Using a Production Function . . . . . . . . . . . 135
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2 Nuclear Safeguard Estimator Function for Modeling. . . . . . . . 139
11.3 Dynamical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.4 Technology Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12 Security Investigations in Nuclear Materials Using
Analytic Pair Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
13 Nuclear Security Assessment Using Loss Function
with Modified Random Numbers. . . . . . . . . . . . . . . . . . . . . . . . . 165
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Contents xi
13.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.2.2 Safeguard Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.2.3 Dynamical Method . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
13.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
xii